**Problem of the Week**

**Math Club**

**BUGCAT 2018**

**DST and GT Day**

**Number Theory Conf.**

**Zassenhaus Conference**

**Hilton Memorial Lecture**

calculus:math_323:start

Section Number | Instructor | Meeting times |
---|---|---|

01 | Charles Evans | MWF 8:00-9:30 OH G102 |

02 | Charles Evans | MWF 9:40-11:10 OH G102 |

03 | Vaidehee Thatte | MWF 11:20-12:50 OH G102 |

04 | Vaidehee Thatte | MWF 1:10-2:40 OH G102 |

05 | Walter Carlip | MWF 2:50-4:20 OH G102 |

06 | William Kazmierczak | MWF 4:40-6:10 OH G102 |

07 | Changwei Zhou | MWF 4:40-6:10 SW 214 |

Course coordinator: William Kazmierczak

*Multivariable Calculus*, Eighth Edition, James Stewart

You will need the online code.

- Chapter 12: Vectors and the Geometry of Space
- Chapter 13: Vector Functions
- Chapter 14: Partial Derivatives
- Chapter 15: Multiple Integrals
- Chapter 16: Vector Calculus

Math 222, Math 227, or Math 230

Develop theoretical and practical skills for multivariable calculus. Specifically, students are expected to be able to demonstrate the following:

(1) Visualize geometry in three-dimensional space (2) Find and apply vector and scalar equations of lines and planes in three-dimensional space (3) Understand the calculus of vector-valued functions (4) Solve unconstrained and constrained optimization problems (5) Find and interpret partial derivatives, directional derivatives, and gradients (6) Set up and evaluate double and triple integrals in rectangular, cylindrical, and spherical coordinates (7) Set up and evaluate line and surface integrals in addition to applying Green's, Stokes', and Divergence Theorem

The final grade will be determined as follows:

- Test 1, 15% (Week 5)
- Test 2, 15% (Week 10)
- Test 3, 15% (Week 14)
- Quizzes, 15%
- Homework, 5%
- Final, 35% (TBD)*

(subject to change and adjustment at your instructor's discretion)

Week | Dates | Sections | Topics |
---|---|---|---|

1 | Aug 22–24 | 12.1 | 3-D Coordinates |

12.2 | Vectors | ||

2 | Aug 27–31 | 12.3 | Dot Products |

12.4 | Cross Products | ||

12.5 | Lines and Planes | ||

3 | Sep 3–7 | No Class: Labor Day Holiday | |

12.6 | Quadric Surfaces | ||

13.1 | Vector Valued Functions | ||

4 | Sep 10–14 | No Class: Rosh Hashanah Holiday | |

13.2 | Derivatives of Vector Valued Functions | ||

13.3 | Arc Length | ||

5 | Sep 17–21 | 13.4 | Motion in Space |

No Class: Yom Kippur Holiday | |||

Exam 1 Review: Chapters 12 and 13 | |||

6 | Sep 24–28 | Exam 1 | Chapters 12 and 13 |

14.1 | Functions of Several Variables | ||

14.2 | Limits and Continuity | ||

7 | Oct 1–5 | 14.3 | Partial Derivatives |

14.4 | Tangent Planes and Linear Approximation | ||

14.5 | The Chain Rule | ||

8 | Oct 8-12 | 14.6 | Directional Derivatives and the Gradient |

14.7 | Maxima and Minima | ||

No class: Fall Break | |||

9 | Oct 15–19 | 14.8 | Lagrange Multipliers |

15.1 | Double Integrals over Rectangles | ||

15.2 | Double Integrals over General Regions | ||

10 | Oct 22–26 | 15.3 | Double Integrals in Polar Coordinates |

Exam 2 Review: Chapter 14 and Sections 15.1 - 15.3 | |||

Exam 2 | Chapter 14 and Sections 15.1 - 15.3 | ||

11 | Oct 29-Nov 2 | 15.6 | Triple Integrals |

15.7 | Triple Integrals in Cylindrical Coordinates | ||

15.8 | Triple Integrals in Spherical Coordinates | ||

12 | Nov 5-9 | 15.9 | Change of Variables |

16.1 | Vector Fields | ||

16.2 | Line Integrals | ||

13 | Nov 12-16 | 16.3 | The Fundamental Theorem of Line Integrals |

16.4 | Green's Theorem | ||

Snow Day | |||

14 | Nov 19-23 | 16.5 | Curl and Divergence |

No Class: Thanksgiving Holiday | |||

No Class: Thanksgiving Holiday | |||

15 | Nov 26-30 | Review for Exam 3: Sections 15.6 - 15.9 and 16.1 - 16.5 | |

Exam 3 | Sections 15.6 - 15.9 and 16.1 - 16.5 | ||

16.6, 16.7 | Parametric Surfaces & Surface Integrals | ||

16 | Dec 3-7 | 16.8 | Stokes' Theorem |

16.9 | The Divergence Theorem | ||

Review | |||

Dec 10-14 | Cumulative Final Exam TBA |

Sample examinations can be found at the following address:

Your instructor will inform you of their office hours for your section.

If you need accommodations to to a disability, please see your instructor with documentation from Services for Students with Disabilities. We will do our best to accommodate your needs.

Cheating is considered a very serious offense. According to the University Catalog, cheating consists of: “Giving or receiving unauthorized help before, during or after an examination”. The full strength of Binghamton Academic Honesty Policy will be applied to anyone caught cheating. This may include failing the course, and further disciplinary action.

The final is comprehensive and mandatory. There will be no make-up for the final exam except for extraordinary circumstances. Failure to take the final will result in a grade of F for the class. University photo ID is required to take the exam. Please note that no calculators are allowed during exams.

calculus/math_323/start.txt · Last modified: 2018/12/04 18:24 by kaz

Except where otherwise noted, content on this wiki is licensed under the following license: CC Attribution-Noncommercial-Share Alike 3.0 Unported