Processing math: 0%

User Tools

Site Tools


people:fer:402ws:spring2019:homework

Math 402 - 01 Homework (Spring 2019)


\newcommand{\aut}{\textrm{Aut}} \newcommand{\inn}{\textrm{Inn}} \newcommand{\sub}{\textrm{Sub}} \newcommand{\cl}{\textrm{cl}} \newcommand{\join}{\vee} \newcommand{\bigjoin}{\bigvee} \newcommand{\meet}{\wedge} \newcommand{\bigmeet}{\bigwedge} \newcommand{\normaleq}{\unlhd} \newcommand{\normal}{\lhd} \newcommand{\union}{\cup} \newcommand{\intersection}{\cap} \newcommand{\bigunion}{\bigcup} \newcommand{\bigintersection}{\bigcap} \newcommand{\sq}[2][\ ]{\sqrt[#1]{#2\,}} \newcommand{\pbr}[1]{\langle #1\rangle} \newcommand{\ds}{\displaystyle} \newcommand{\C}{\mathbb{C}} \newcommand{\R}{\mathbb{R}} \newcommand{\Q}{\mathbb{Q}} \newcommand{\Z}{\mathbb{Z}} \newcommand{\N}{\mathbb{N}} \newcommand{\A}{\mathbb{A}} \newcommand{\F}{\mathbb{F}} \newcommand{\T}{\mathbb{T}} \newcommand{\ol}[1]{\overline{#1}} \newcommand{\imp}{\Rightarrow} \newcommand{\rimp}{\Leftarrow} \newcommand{\pinfty}{1/p^\infty} \newcommand{\power}{\mathcal{P}} \newcommand{\calL}{\mathcal{L}} \newcommand{\calC}{\mathcal{C}} \newcommand{\calN}{\mathcal{N}} \newcommand{\calB}{\mathcal{B}} \newcommand{\calF}{\mathcal{F}} \newcommand{\calR}{\mathcal{R}} \newcommand{\calS}{\mathcal{S}} \newcommand{\calU}{\mathcal{U}} \newcommand{\calT}{\mathcal{T}} \newcommand{\gal}{\textrm{Gal}} \newcommand{\isom}{\approx} \newcommand{\idl}{\textrm{Idl}} \newcommand{\lub}{\textrm{lub}} \newcommand{\glb}{\textrm{glb}} \newcommand{\cis}{\textrm{cis}}

Problem Set 10 (complete) Due: 05/10/2019

  1. Let F be a field of characteristic zero, a\in F, and \xi=\xi_n a primitive n-th root of unity.
    1. Show by example that \gal_F(F(\xi)) need not be all of U_n.
    2. Show by example that \gal_{F(\xi)}(F(\xi,\sq[n]{a})) need not be all of C_n.
  2. Let G and H be solvable groups. Prove that G\times H is solvable.
  3. Show that the change of variable y=x+(a/3) transforms the general cubic equation x^3+ax^2+bx+c = 0 into a depressed cubic. Therefore, Cardano's formula is useful to solve any cubic equation.

Problem Set 09 (complete) Due: 05/03/2019 Board presentation: 05/10/2019

  1. Prove that the homomorphism \begin{array}{rccc} \psi:& U_n &\to &\gal(\Q(\xi_n)/\Q) \\ & k &\mapsto &\psi_k \\ \end{array} is surjective and injective.
  2. Let \xi_{15}=\cis(2\pi/15) be a primitive 15-th root of unity.
    1. Find the group \gal(\Q(\xi_{15})/\Q) and draw its lattice of subgroups.
    2. Find and draw the lattice of intermediate fields of the extension \Q(\xi_{15})/\Q.
    3. Write down the correspondence between the subgroups in part 1, and the subfields in part 2, using the Fundamental Theorem of Galois Theory.
  3. Show that any non-abelian simple group is non-solvable.
  4. Show that if d is a divisor of n then \Q(\xi_d) is a subfield of \Q(\xi_n). Conclude that \varphi(d) divides \varphi(n), and U_d is a quotient of U_n.

Problem Set 08 (complete) Due: 04/26/2019 Board presentation: 05/03/2019

  1. Prove the following corollary to the Fundamental Theorem of Galois Theory. Use only the FTGT statements to prove it. Let E/F be a (finite) Galois extension, with Galois group G=\gal_F(E). Let L_1,L_2\in\sub_F(E) and H_1,H_2\in\sub(G).
    1. (L_1\meet L_2)^* = L_1^* \join L_2^*
    2. (L_1\join L_2)^* = L_1^* \meet L_2^*
    3. (H_1\meet H_2)^* = H_1^* \join H_2^*
    4. (H_1\join H_2)^* = H_1^* \meet H_2^*
  2. Let f(x)\in\Q[x] be such that it has a non-real root. Let E be the splitting field of f(x) over \Q. Prove that \gal_\Q(E) has even order.
  3. Consider the polynomial f(x)=x^3+2x^2+2x+2\in\Q[x], and E its splitting field over \Q.
    1. Show that f(x) has exactly one real root. (Hint: use calculus)
    2. Show that f(x) is irreducible over \Q.
    3. Find [E:\Q]. Fully explain your calculation.
    4. Determine \gal_\Q(E).
  4. Consider the group S_n of all permutations of the set \{1,2,\dots,n\}.
    1. Show that the transpositions (1\ \ 2),(2\ \ 3),\dots,(n-1\ \ n) generate the whole group S_n.
    2. Show that S_n is generated by the following two permutations: \rho = (1\ \ 2\ \ \dots\ \ n) \quad \text{and} \quad \sigma=(1\ \ 2) (Hint: conjugate \sigma by \rho.)
    3. For p is a prime, \rho a p-cycle, and \sigma a transposition, show that \rho and \sigma generate S_p. Show, by counterexample, that the hypothesis of p being prime cannot be removed.

Previous Homework

Home

people/fer/402ws/spring2019/homework.txt · Last modified: 2019/05/09 09:11 by fer