User Tools

Site Tools


seminars:comb

The Combinatorics Seminar

Organizers: Laura Anderson, Vaidy Sivaraman, and Thomas Zaslavsky.

Previous talks


Fall 2014

Permutations are some of the most fundamental objects of mathematics. A basic combinatorial statistic of a permutation $\pi\in S_n$ is the number of descents, $des(\pi):=\#\{j:\pi(j) > \pi(j+1)\}$. Euler realized that $$ \sum_{k\geq 0}(k+1)^n t^k = \sum_{\pi\in S_n} t^{des(\pi)}/(1-t)^{n+1}$$ and there have been various generalizations of this identity, most notably when Sn gets replaced by another Coxeter group.

I will illustrate how one can view Euler's identity (and its generalizations) geometrically through enumerating integer points in certain polyhedra. This gives rise to “short” proofs of known theorems, as well as new identities.

This is joint work with Ben Braun (Kentucky).

  • Tuesday, September 9
    Speaker: ??? ??? (??? Institute)
    Title: Some Title
    Time: 1:15 - 2:15
    Room: TBD
  • Tuesday, September 16
    Speaker: ??? ??? (??? Institute)
    Title: Some Title
    Time: 1:15 - 2:15
    Room: TBD
  • Tuesday, September 23
    Speaker: ??? ??? (??? Institute)
    Title: Some Title
    Time: 1:15 - 2:15
    Room: TBD
seminars/comb.txt · Last modified: 2017/01/05 18:20 (external edit)