**Problem of the Week**

**BUGCAT**

**Zassenhaus Conference**

**Hilton Memorial Lecture**

**BingAWM**

**Math Club**

seminars:comb:abstract.201204abr

Given a graph G cellularly embedded in a closed surface S, an automorphism of G is called a “cellular automorphism of G in S” when, loosely speaking, it takes facial boundary walks to facial boundary walks. I will describe how Dan Slilaty and I constructed complete catalogs of all irreducible cellular automorphisms of the sphere, projective plane, torus, Klein bottle, and three-crosscap surface for a particular notion of reducibility related to taking minors.

We have also determined concrete procedures sufficient for constructing all possible self-dual embeddings in any closed surface S given a catalog of all irreducible cellular automorphisms in S.

I will illustrate by way of examples some of these procedures and some resulting self-dual graphs.

This talk is based on joint work with Dan Slilaty.

seminars/comb/abstract.201204abr.txt · Last modified: 2020/01/29 14:03 (external edit)

Except where otherwise noted, content on this wiki is licensed under the following license: CC Attribution-Noncommercial-Share Alike 3.0 Unported