**Problem of the Week**

**BUGCAT**

**Zassenhaus Conference**

**Hilton Memorial Lecture**

**BingAWM**

**Math Club**

**Actuarial Association**

You are here: Homepage » Seminars - Academic year 2023-24 » Combinatorics Seminar » Andy Frohmader (Cornell)

seminars:comb:abstract.201003fro

One can construct an abstract simplicial complex on a set of colored vertices with the restriction that no two vertices of the same color can be in the same face. The flag f-numbers of the complex are the numbers of faces whose vertices are precisely a given color set, e.g., edges with exactly one red vertex and one blue vertex. It then makes sense to ask what possible collections of flag f-numbers a complex could have. More than twenty years ago, it was shown that three other characterization problems are equivalent to this one, but none of the problems has a known solution. I will explain why there cannot be a “nice” solution to this problem of a certain sort analogous to that of some similar problems, and then give a solution to the case of three colors.

seminars/comb/abstract.201003fro.txt · Last modified: 2020/01/29 14:03 (external edit)

Except where otherwise noted, content on this wiki is licensed under the following license: CC Attribution-Noncommercial-Share Alike 3.0 Unported