User Tools

Site Tools


people:xxu:xxu-personal

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

people:xxu:xxu-personal [2024/12/11 13:46]
xxu
people:xxu:xxu-personal [2025/04/20 15:18] (current)
xxu
Line 1: Line 1:
 +<​HTML>​
 +<​HEAD>​
 +
 + <​TITLE>​Xiangjin Xu - Home Page</​TITLE>​
 +<H1 CLASS="​western"​ ALIGN=CENTER>​Personal Home Page of Xiangjin Xu</​H1>​
 +
 +</​HEAD>​
 +<BODY LANG="​en-US"​ DIR="​LTR">​
 +<P STYLE="​border-top:​ none; border-bottom:​ 1.10pt double #808080; border-left:​ none; border-right:​ none; padding-top:​ 0in; padding-bottom:​ 0.02in; padding-left:​ 0in; padding-right:​ 0in">​
 +<BR>
 +</P>
  
 +<HR>
 +<TABLE WIDTH=780 BORDER=1 CELLPADDING=4 CELLSPACING=3>​
 + <COL WIDTH=1160>​
 + <TR>
 + <TD WIDTH=1000 VALIGN=TOP>​
 + <​UL>​
 + <​UL>​
 + <​!-- <H2 CLASS="​western"​ ALIGN=CENTER><​A HREF="​CV-updated.pdf"><​FONT FACE="​Times New Roman, serif"><​FONT SIZE=5STYLE="​font-size:​ 18pt">​MY
 + CURRICULUM VITAE</​FONT></​FONT></​A></​H2>​-->​
 + </​UL>​
 + </​UL>​
 + </​TD>​
 + </​TR>​
 + <TR>
 + <TD WIDTH=991 VALIGN=TOP>​
 + <H2 CLASS="​western"​ ALIGN=CENTER><​FONT FACE="​Times New Roman, serif"><​FONT SIZE=5 STYLE="​font-size:​ 18pt">​RESEARCH INSTERESTS
 + </​FONT></​FONT>​
 + </​H2>​
 + </​TD>​
 + </​TR>​
 + <TR>
 + <TD WIDTH=991 VALIGN=TOP>​
 +<H2 CLASS="​western"​ ALIGN=LEFT><​FONT SIZE=4 STYLE="​font-size:​ 16pt">​I. Harmonic Analysis on Manifolds:</​FONT></​H2>​
 + <​UL>​
 +<​LI><​P><​FONT SIZE=4 STYLE="​font-size:​ 14pt">​
 +Detailed study of the relationship between the growth estimates (Lp, bilinear, multilinear,​ and gradient estimates) of the eigenfunctions and the global geometric properties on compact manifolds. Apply the eigenfunction estimates to study the location, distribution and size of nodal sets of eigenfunctions,​ and to study H\"​ormander multiplier problems, Bochner-Riesz means for eigenfunction expansion on compact manifolds.
 +</​FONT></​FONT></​P><​LI><​P><​FONT SIZE=4 STYLE="​font-size:​ 14pt">​
 +Apply the eigenfunction estimates for spectral projectors on manifolds (with or without boundary) to study well-posedness problems for partial differential equations on compact manifolds, including linear or nonlinear wave equations, Schr\"​odinger equations, 2D (dissipative) quasi-geostrophic equations, and 2D Euler equations.
 +</​FONT></​FONT></​P>​
 + </​UL>​
 + </​TD>​
 + </​TR>​
 + <TR>
 + <TD WIDTH=991 VALIGN=TOP>​
 +<P ALIGN=LEFT><​FONT SIZE=4 STYLE="​font-size:​ 16pt"><​B>​II. Nonlinear differential equations: </​B></​FONT>​
 + </​P>​
 + <​UL>​
 +<​LI><​P ALIGN=LEFT><​FONT SIZE=4 STYLE="​font-size:​ 14pt">​
 +Study Li-Yau type sharp differential Harnack inequalities,​ the heat kernel estimates, and the monotonicity of entropy for linear heat equations and Schr\"​odinger operators on Riemannian manifolds with negative Ricci curvature. Study Liouville'​s Theorems for Schr\"​odinger operators on Riemannian manifolds with nonnegative Ricci curvature.
 +</​FONT></​P>​
 +<​LI><​P><​FONT SIZE=4 STYLE="​font-size:​ 14pt">​
 +Study gradient estimates for degenerate parabolic equations and Liouville'​s Theorems, local Aronson-Benilan estimates and entropy formulae for Porous Media Equations and Fast Diffusion Equations.
 +</​FONT></​P>​
 +<​LI><​P><​FONT SIZE=4 STYLE="​font-size:​ 14pt">​
 +Study the global uniqueness problems and the boundary stabilization,​ controllability and observability problems for (linear and nonlinear) parabolic and hyperbolic PDE's on manifolds via Carleman estimates. ​
 +</​FONT>​
 + </​P>​
 +<​LI><​P><​FONT SIZE=4 STYLE="​font-size:​ 14pt">​
 +Study the Periodic solutions, subharmonics and homoclinic orbits of Hamiltonian systems.
 +</​FONT></​FONT></​P>​
 + </​UL>​
 + </​TD>​
 + </​TR>​
 + <TR>
 + <TD WIDTH=991 VALIGN=TOP>​
 + <H2 CLASS="​western"​ ALIGN=CENTER><​FONT SIZE=4 STYLE="​font-size:​ 16pt"><​FONT SIZE=5 STYLE="​font-size:​ 18pt">​THESIS
 + </​FONT>​ </​FONT>​
 + </​H2>​
 + </​TD>​
 + </​TR>​
 + <TR>
 + <TD WIDTH=991 VALIGN=TOP>​
 + <​OL>​
 +<​LI><​P><​FONT SIZE=4 STYLE="​font-size:​ 16pt"><​FONT SIZE=5><​B>​Master Thesis:</​B></​FONT> ​
 +Periodic solutions of Hamiltonian systems and differential systems. Nankai Institute of Mathematics,​ Tianjin,
 + China, June 1999.
 +</​FONT></​P>​
 +<​LI><​P ALIGN=LEFT><​FONT SIZE=4 STYLE="​font-size:​ 16pt"><​FONT SIZE=5><​B>​PhD Thesis:</​B></​FONT> ​
 +Eigenfunction Estimates on Compact Manifolds with Boundary and H\&​quot;​ormander Multiplier Theorem. Johns Hopkins University, Baltimore, Maryland, May 2004.(<A HREF="​thesis.pdf">​PDF</​A>​)</​FONT></​P>​
 + </​OL>​
 + </​TD>​
 + </​TR>​
 + <TR>
 + <TD WIDTH=991 VALIGN=TOP>​
 + <H2 CLASS="​western"​ ALIGN=CENTER><​FONT SIZE=4 STYLE="​font-size:​ 16pt"><​FONT SIZE=5 STYLE="​font-size:​ 18pt">​PUBLICATIONS</​A>​
 + </​FONT>​ </​FONT>​
 + </​H2>​
 + </​TD>​
 + </​TR>​
 + <TR>
 + <TD WIDTH=991 VALIGN=TOP>​
 + <​OL>​
 +
 +                                    <​LI><​P><​FONT SIZE=4 STYLE="​font-size:​ 16pt">​
 +<​B>​Xiangjin Xu</​B>,​ Subharmonic solutions of a class of non-autonomous Hamiltonian systems. <​I>​Acta Sci. Nat. Univer. Nankai.</​I>​ Vol. 32, No.2, (1999), pp. 46-50.(In Chinese)</​FONT></​P>​
 +
 +                                   <​LI><​P><​FONT SIZE=4 STYLE="​font-size:​ 16pt"> ​
 +Yiming Long, <​B>​Xiangjin Xu</​B>,​ Periodic solutions for a class of nonautonomous Hamiltonian systems. </​FONT><​FONT SIZE=4 STYLE="​font-size:​ 16pt"><​I>​Nonlinear Anal. Ser. A: Theory Methods, </​I></​FONT><​FONT SIZE=4 STYLE="​font-size:​ 16pt">​41 (2000), no. 3-4, 455-463. (<A HREF="​http://​people.math.binghamton.edu/​xxu/​Long-Xu.pdf">​PDF</​A>​)</​FONT></​P>​
 +
 +                                    <​LI><​P><​FONT SIZE=4 STYLE="​font-size:​ 16pt">​
 +<​B>​Xiangjin Xu</​B>,​ Homoclinic orbits for first order Hamiltonian systems possessing super-quadratic potentials. </​FONT><​FONT SIZE=4 STYLE="​font-size:​ 16pt"><​I>​Nonlinear Anal. Ser. A: Theory Methods,</​I></​FONT>​ <FONT SIZE=4 STYLE="​font-size:​ 16pt">​51 (2002), no. 2, 197-214. (<A HREF="​http://​people.math.binghamton.edu/​xxu/​Xu-homoclinic.pdf">​PDF</​A>​)</​FONT></​P>​
 +
 +                                   <​LI><​P><​FONT SIZE=4 STYLE="​font-size:​ 16pt">​
 +<​B>​Xiangjin Xu</​B>,​ Periodic solutions for non-autonomous Hamiltonian systems possessing super-quadratic potentials. </​FONT><​FONT SIZE=4 STYLE="​font-size:​ 16pt"><​I>​Nonlinear Anal. Ser. A: Theory Methods,</​I></​FONT>​ <FONT SIZE=4 STYLE="​font-size:​ 16pt">​51 (2002), no. 6, 941-955. (<A HREF="​http://​people.math.binghamton.edu/​xxu/​Xu-periodicsolution.pdf">​PDF</​A>​)</​FONT></​P>​
 +
 +                                   <​LI><​P><​FONT SIZE=4 STYLE="​font-size:​ 16pt">​
 +<​B>​Xiangjin Xu</​B>,​ Subharmonics for first order convex nonautonomous Hamiltonian systems. </​FONT><​FONT SIZE=4 STYLE="​font-size:​ 16pt"><​I>​J. Dynam. Differential Equations</​I></​FONT>​ <FONT SIZE=4 STYLE="​font-size:​ 16pt">​15 (2003), no. 1, 107-123. (<A HREF="​http://​people.math.binghamton.edu/​xxu/​subharmonic-revised.pdf">​PDF</​A>​)</​FONT></​P>​
 +
 +                               <​LI><​P><​FONT SIZE=4 STYLE="​font-size:​ 16pt">​
 +<​B>​Xiangjin Xu</​B>,​ Multiple solutions of super-quadratic second order dynamical systems. Dynamical systems and differential equations (Wilmington,​ NC, 2002). </​FONT><​FONT SIZE=4 STYLE="​font-size:​ 16pt"><​I>​Discrete Contin. Dyn. Syst.</​I></​FONT>​ <FONT SIZE=4 STYLE="​font-size:​ 16pt">​2003,​ suppl., 926-934. (<A HREF="​http://​people.math.binghamton.edu/​xxu/​msds.pdf">​PDF</​A>​)</​FONT></​P>​
 +
 +                               <​LI><​P><​FONT SIZE=4 STYLE="​font-size:​ 16pt">​
 +<​B>​Xiangjin Xu</​B>,​ Sub-harmonics of first order Hamiltonian systems and their asymptotic behaviors. Nonlinear differential equations, mechanics and bifurcation (Durham, NC, 2002). </​FONT><​FONT SIZE=4 STYLE="​font-size:​ 16pt"><​I>​Discrete Contin. Dyn. Syst. Ser. B</​I></​FONT>​ <FONT SIZE=4 STYLE="​font-size:​ 16pt">​3 (2003), no. 4, 643-654. (<A HREF="​http://​people.math.binghamton.edu/​xxu/​subharmonic-asym.pdf">​PDF</​A>​)</​FONT></​P>​
 +
 +                              <​LI><​P><​FONT SIZE=4 STYLE="​font-size:​ 16pt">​
 +<​B>​Xiangjin Xu</​B>,​ Homoclinic orbits for first order Hamiltonian systems with convex potentials. </​FONT><​FONT SIZE=4 STYLE="​font-size:​ 16pt"><​I>​Advanced Nonlinear Studies </​I></​FONT><​FONT SIZE=4 STYLE="​font-size:​ 16pt">​6 (2006), 399-410. (<A HREF="​http://​people.math.binghamton.edu/​xxu/​homoclinic-convex-HS.pdf">​PDF</​A>​)</​FONT></​P>​
 +
 +                                 <​LI><​P><​FONT SIZE=4 STYLE="​font-size:​ 16pt">​
 +<​B>​Xiangjin Xu</​B>,​ New Proof of H\&​quot;​ormander Multiplier Theorem on Compact manifolds without boundary. </​FONT><​FONT SIZE=4 STYLE="​font-size:​ 16pt"><​I>​Proc. Amer. Math. Soc. </​I></​FONT><​FONT SIZE=4 STYLE="​font-size:​ 16pt">​135 (2007), 1585-1595.(<​A HREF="​http://​www.ams.org/​journals/​proc/​2007-135-05/​S0002-9939-07-08687-X/​home.html">​PDF</​A>​)</​FONT></​P>​
 +
 +                           <​LI><​P><​FONT SIZE=4 STYLE="​font-size:​ 16pt">​
 +Roberto Triggiani, <​B>​Xiangjin Xu</​B>,​ Pointwise Carleman Estimates, Global Uniqueness, Observability,​ and Stabilization for Schrodinger Equations on Riemannian Manifolds at the H1-Level. </​FONT><​FONT SIZE=4 STYLE="​font-size:​ 16pt"><​I>​AMS
 + ​Contemporary Mathematics</​I></​FONT><​FONT SIZE=4 STYLE="​font-size:​ 16pt">,​ Volume 426, 2007, 339-404. (<A HREF="​http://​people.math.binghamton.edu/​xxu/​RT02-06AMS.pdf">​PDF</​A>​)</​FONT></​P>​
 +
 +                        <​LI><​P><​FONT SIZE=4 STYLE="​font-size:​ 16pt">​
 +<​B>​Xiangjin Xu</​B>,​ Gradient estimates for eigenfunctions of compact manifolds with boundary and the H\&​quot;​ormander multiplier theorem. </​FONT><​FONT SIZE=4 STYLE="​font-size:​ 16pt"><​I>​Forum Mathematicum</​I></​FONT>​ <FONT SIZE=4 STYLE="​font-size:​ 16pt">​21:​3 (May 2009), pp. 455-476. (<A HREF="​http://​www.degruyter.com/​view/​j/​form.2009.21.issue-3/​forum.2009.021/​forum.2009.021.xml">​PDF</​A>​)</​FONT></​P>​
 +
 +                         <​LI><​P><​FONT SIZE=4 STYLE="​font-size:​ 16pt">​
 +<​B>​Xiangjin Xu</​B>,​ Eigenfunction estimates for Neumann Laplacian on compact manifolds with boundary and multiplier problems. Proc. Amer. Math. Soc. 139 (2011), 3583-3599.(<​A HREF="​http://​www.ams.org/​journals/​proc/​2011-139-10/​S0002-9939-2011-10782-2/​home.html">​PDF</​A>​)</​FONT></​P>​
 +
 +            <​LI><​P><​A NAME="​ddDoi"></​A><​A NAME="​ddJrnl"></​A><​FONT SIZE=4 STYLE="​font-size:​ 16pt">​
 +Junfang Li, <​B>​Xiangjin Xu</​B>,​ Differential Harnack inequalities on Riemannian manifolds I : linear heat equation.Advance in Mathematics,​ Volume 226, Issue 5, (March, 2011) Pages 4456-4491 <A HREF="​http://​www.sciencedirect.com/​science/​article/​pii/​S0001870810004421">​doi:​10.1016/​j.aim.2010.12.009</​A>​
 + (<A HREF="​http://​front.math.ucdavis.edu/​0901.3849">​arXiv:​0901.3849</​A>​
 + ) </​FONT>​ </​P>​
 +
 + <​LI><​P><​FONT SIZE=4 STYLE="​font-size:​ 16pt">​
 +Liangui Wang, <​B>​Xiangjin Xu</​B>,​ Hybrid state feedback, robust H control for a class switched systems with nonlinear uncertainty. </​FONT>​ <FONT SIZE=4 STYLE="​font-size:​ 16pt">​ Z. Qian et al.(Eds.):​Recent Advances in CSIE 2011, 
 +<A HREF="​http://​link.springer.com/​chapter/​10.1007/​978-3-642-25778-0_29">​Lecture Notes in Electrical Engineering,​ Volume 129, 2012, pp 197-202 </​A></​FONT></​P>​
 +
 + <​LI><​P><​FONT SIZE=4 STYLE="​font-size:​ 16pt">​
 +<​B>​Xiangjin Xu</​B>,​ Gradient estimates for ut=ΔF(u) on manifolds and some Liouville-type theorems. Journal of Differential Equation (2011) <A HREF="​http://​www.sciencedirect.com/​science/​article/​pii/​S0022039611003184">​doi:​10.1016/​j.jde.2011.08.004</​A>​
 + <A HREF="​http://​front.math.ucdavis.edu/​0805.3676">​arXiv:​0805.3676</​A>​ </​FONT>​ </​P>​
 +
 + <​LI><​P><​FONT SIZE=4 STYLE="​font-size:​ 16pt">​
 +<​B>​Xiangjin Xu</​B>,​ Upper and lower bounds for normal derivatives of spectral clusters of Dirichlet Laplacian. Journal of Mathematical Analysis and Applications,​ Volume 387, Issue 1, (March, 2012), Pages 374-383 ​ <A HREF="​http://​www.sciencedirect.com/​science/​article/​pii/​S0022247X11008511">​doi:​10.1016/​j.jmaa.2011.09.003
 + </​A>,​ </​FONT><​A HREF="​http://​front.math.ucdavis.edu/​1004.2517"><​FONT FACE="​CMR12"><​FONT SIZE=4 STYLE="​font-size:​ 16pt">​ArXiv:​1004.2517
 + </​FONT></​FONT></​A>​ </​P>​
 +
 +
 +<​LI><​P><​FONT SIZE=4 STYLE="​font-size:​ 16pt">​
 +Huichao Chen, <​B>​Xiangjin Xu</​B>,​ Power analysis of a left-truncated normal mixture distribution with
 +applications in red blood cell velocities. Presentation (by <B>H. Chen</​B>​) at Joint Statistical Meetings (JSM),
 +Montreal, August, 2013.(<A HREF="​CX-poweranalysis.pdf"></​A>​)</​FONT></​P>​
 +
 +                      <​LI><​P><​FONT SIZE=4 STYLE="​font-size:​ 16pt">​
 +<​B>​Xiangjin Xu</​B>,​ Characterization of Carleson Measures via Spectral Estimates on Compact Manifolds with Boundary. In: Wanduku, D., Zheng, S., Zhou, H., Chen, Z., Sills, A., Agyingi, E. (eds) Applied Mathematical Analysis and Computations I. SGMC 2021. Springer Proceedings in Mathematics & Statistics, vol 471. Springer, Cham. 2024. <A HREF="​https://​doi.org/​10.1007/​978-3-031-69706-7_1">​https://​doi.org/​10.1007/​978-3-031-69706-7_1</​A>​(<​A HREF="​Xu-Carleson.pdf"></​A>​)</​FONT></​P>​
 +
 + </​OL>​
 + </​TD>​
 + </​TR>​
 + <TR>
 + <TD WIDTH=991 VALIGN=TOP>​
 + <​UL>​
 + <​UL>​
 + <​UL>​
 + <​UL>​
 + <​UL>​
 + <​UL>​
 + <​P ALIGN=CENTER STYLE="​margin-right:​ 1in; text-decoration:​ none">​
 + <​FONT SIZE=5 STYLE="​font-size:​ 18pt"><​A HREF="​preprints.html"><​B>​PREPRINTS AND WORK IN PROGRESS</​A>​ </​B></​FONT>​
 + </​P>​
 + </​UL>​
 + </​UL>​
 + </​UL>​
 + </​UL>​
 + </​UL>​
 + </​UL>​
 + </​TD>​
 + </​TR>​
 + <TR>
 + <TD WIDTH=991 VALIGN=TOP>​
 + <​B><​OL></​B>​
 +
 +
 +
 +<​LI><​P><​FONT SIZE=4 STYLE="​font-size:​ 16pt">​
 +<​B>​Xiangjin Xu</​B>, ​ Heat kernel Gaussian bounds on manifolds I: manifolds with non-negative Ricci curvature, arXiv:​1912.12758 [math.DG] (<A HREF="​Xu-HeatKernel.pdf"></​A>​)</​FONT></​P>​
 +
 +
 +
 +
 +<​LI><​P><​FONT SIZE=4 STYLE="​font-size:​ 16pt">​
 +<​B>​Xiangjin Xu</​B>,​ Sharp Gradient and Laplacian Estimates for the Heat Kernel on Complete Manifolds with Nonnegative Ricci Curvature, preprint.
 + (<A HREF="​Xu-HeatKernel-II.pdf"></​A>​)</​FONT></​P>​
 +
 +
 +<​LI><​P><​FONT SIZE=4 STYLE="​font-size:​ 16pt">​
 +<​B>​Xiangjin Xu</​B>,​ Heat kernel Gaussian bounds on manifolds II: manifolds with negative Ricci curvature, preprint.
 + (<A HREF="​Xu-HeatKernel-II.pdf"></​A>​)</​FONT></​P>​
 +
 +
 +<​LI><​P><​FONT SIZE=4 STYLE="​font-size:​ 16pt">​
 +<​B>​Xiangjin Xu</​B>, ​ Sharp Hamilton'​s Gradient and Laplacian Estimates on noncompact manifolds. preprint.
 + (<A HREF="​Xu-HeatKernel-II.pdf"></​A>​)</​FONT></​P>​
 +
 +
 +<​LI><​P><​FONT SIZE=4 STYLE="​font-size:​ 16pt"> ​
 +<​B>​Xiangjin Xu</​B>,​ Differential Harnack inequalities on Riemannian manifolds II: Schr\"​odinger operator. (<A HREF="​LX-DHI-II.pdf"></​A>​)</​FONT></​P>​
 +
 +
 +
 +
 +<​LI><​P><​FONT SIZE=4 STYLE="​font-size:​ 16pt"> ​
 +<​B>​Xiangjin Xu</​B>,​ Multiple periodic solutions of super-quadratic Hamiltonian systems with bounded forcing
 +terms. (<A HREF="​Xu-HS-BF.pdf"></​A>​)</​FONT></​P>​
 +
 +<​LI><​P><​FONT SIZE=4 STYLE="​font-size:​ 16pt">​
 +<​B>​Xiangjin Xu</​B>,​ Periodic and subharmonic solutions of Hamiltonian systems possessing "​super-quadratic"​ potentials. ​ (<A HREF="​Xu-HS-SQ.pdf"></​A>​)</​FONT></​P>​
 +
 +
 + </​OL>​
 + </​TD>​
 + </​TR>​
 + <TR>
 + <TD WIDTH=991 VALIGN=TOP>​
 + <​UL>​
 + <​P><​FONT SIZE=4 STYLE="​font-size:​ 16pt">​My research is
 + partially supported by <​B>​the NSF Grant <A HREF="​http://​www.nsf.gov/​awardsearch/​showAward.do?​AwardNumber=0602151">​NSF-DMS
 + 0602151</​A>​(June 1 2006-November 30, 2008) and <A HREF="​http://​www.nsf.gov/​awardsearch/​showAward.do?​AwardNumber=0852507">​NSF-DMS-0852507</​A>​
 + (June 1, 2008-May 31, 2010)</​B>,​ and partially supported by </​FONT><​FONT FACE="​Times New Roman, serif"><​FONT SIZE=4 STYLE="​font-size:​ 18pt"><​B>​Harpur
 + College Grant in Support of Research, Scholarship and Creative
 + Work in Year 2010-2011, 2012-2013, 2018-2019.</​B></​FONT></​FONT></​P>​
 + </​UL>​
 + </​TD>​
 + </​TR>​
 +</​TABLE>​
 +<HR>
 +<​P>​Last updated: 05/​01/​2015 ​
 +</P>
 +</​BODY>​
 +</​HTML>​