Activities
Student Organizations
Math Club
BingAWM
Actuarial Association
Math 502 Statistical Inference.
Spring 2015
Math 501.
The required text is Casella & Berger (see below). Some reference texts are listed below as well.
Due on 02/04
Due on 02/11
Due on 02/18
Due on 02/25
Due on 03/06
Due on 03/11
Due on 03/18
Due on 03/25
Due on 04/1
Due on 04/22
I am not satisfied with some of your answers to 9.23 in the homework returned today. I am giving a second chance for those who lost points for 9.23. You may submit your new answers (especially the numerical answers) along with this homework. I will consider adding back some points to that homework assignment. Please indicate that how many points you lost for 9.23. For the numerical answer, I have provided a Monte Carlo method to calculate the p value in the solution. You should use some other approach. For example, you can calculate the p value by taking the sum of the probabilities of $x$ which satisfies $LR(x)<LR(x_0)$ for $x=0,1,2,\dots,10000$ (instead of $\infty$) to approximate the p value, where $x_0$ is the observed data. This is just one suggestion and there are other approaches.
Due on 05/01
R code notes pp. 60, fig10.r
myfun=function(n){ m=1000 x=rgamma(m,n,1)/n # m X’s y=-2*(n*log(x)+n*(1-x)) # m λ’s u=rchisq(m,1) qqplot(y,u,main=paste("QQ plot, n=",n)) lines(y,y) sy=sort(y) plot(sy,ppoints(sy), xlim=c(0.5,2), ylim=c(0.4,0.9), type="l", lty=1, main=paste("CDF, n=",n)) lines(sy,pchisq(sy,1), xlim=c(0.5,2), ylim=c(0.4,0.9), type="l", lty=2) } pdf("fig10.pdf",height=9.0, width=6.5) par(mfrow=c(2,2)) n=1 myfun(n) n=100 myfun(n) dev.off()
Due on 05/06