Activities
Student Organizations
Math Club
BingAWM
Actuarial Association
#Generating data repet <- 10000 size <- 100 p <- .5 data <- (rbinom(repet, size, p) - size * p) / sqrt(size * p * (1-p)) hist(data, freq = FALSE) #Histograms #By default you get a frequency histogram. #To get a density you set "freq = FALSE". #To control the number of bins use "breaks = ". hist(data, breaks = size/2, col = 'red', freq = FALSE) #Plotting the pdf of the normal distribution x <- seq(min(data) - 1, max(data) + 1, .01) lines(x, dnorm(x), col='green', lwd = 4) #similar exercise for uniform random variables. size <- 3 data <- runif(repet * size) data.matrix <- matrix(data, nrow = size) mu <- size * 1/2 sigma <- sqrt(size * 1/12) data <- (colSums(data.matrix) - mu )/ sigma hist(data, breaks = 100, col = 'red', freq = FALSE) lines(x, dnorm(x), col = 'green', lwd = 4)