User Tools

Site Tools


people:fer:330ws:fall2018:homework

Math 330 - 03 Homework (Fall 2018)

  • LaTeX-ed solutions are encouraged and appreciated.
  • If you use LaTeX, hand-in a printed version of your homework.
  • You are encouraged to discuss homework problems with classmates, but such discussions should NOT include the exchange of any written material.
  • Writing of homework problems should be done on an individual basis.
  • References to results from the textbook and/or class notes should be included.
  • The following lists should be considered partial and tentative lists until the word complete appears next to it.
  • Use 8.5in x 11in paper with smooth borders. Write your name on top of each page. Staple all pages.

$\newcommand{\aut}{\textrm{Aut}} \newcommand{\sub}{\textrm{Sub}} \newcommand{\join}{\vee} \newcommand{\bigjoin}{\bigvee} \newcommand{\meet}{\wedge} \newcommand{\bigmeet}{\bigwedge} \newcommand{\normaleq}{\unlhd} \newcommand{\normal}{\lhd} \newcommand{\union}{\cup} \newcommand{\intersection}{\cap} \newcommand{\bigunion}{\bigcup} \newcommand{\bigintersection}{\bigcap} \newcommand{\sq}[2][\ ]{\sqrt[#1]{#2\,}} \newcommand{\pbr}[1]{\langle #1\rangle} \newcommand{\ds}{\displaystyle} \newcommand{\C}{\mathbb{C}} \newcommand{\R}{\mathbb{R}} \newcommand{\Q}{\mathbb{Q}} \newcommand{\Z}{\mathbb{Z}} \newcommand{\N}{\mathbb{N}} \newcommand{\A}{\mathbb{A}} \newcommand{\F}{\mathbb{F}} \newcommand{\T}{\mathbb{T}} \newcommand{\ol}[1]{\overline{#1}} \newcommand{\imp}{\Rightarrow} \newcommand{\rimp}{\Leftarrow} \newcommand{\pinfty}{1/p^\infty} \newcommand{\power}{\mathcal{P}} \newcommand{\calL}{\mathcal{L}} \newcommand{\calC}{\mathcal{C}} \newcommand{\calN}{\mathcal{N}} \newcommand{\calB}{\mathcal{B}} \newcommand{\calF}{\mathcal{F}} \newcommand{\calR}{\mathcal{R}} \newcommand{\calS}{\mathcal{S}} \newcommand{\calU}{\mathcal{U}} \newcommand{\calT}{\mathcal{T}} \newcommand{\gal}{\textrm{Gal}} \newcommand{\isom}{\approx} $

Problem Set 05 (partial) Due: 10/01/2018. Board presentation: 10/??/2018

  1. Prove Prop. 4.6.iii

Problem Set 04 (complete) Due: 09/17/2018. Board presentation: 09/21/2018

  1. Prove Prop. 2.38 (appendix)
  2. Prove Prop. 2.41.iii (appendix)

Problem Set 03 (complete) Due: 09/12/2018. Board presentation: 09/17/2018

  1. Prove that for all $k\in\N$, $k^2+k$ is divisible by 2.
  2. Prove Prop. 2.18.iii
  3. Prove Prop. 2.21. Hint: use proof by contradiction.
  4. Prove Prop. 2.23. Show, by counterexample, that the statement is not true if the hypothesis $m,n\in\N$ is removed.
  5. Fill-in the blank and prove that for all $k\geq\underline{\ \ }$, $k^2 < 2^k$.

Previous Homework

Home

people/fer/330ws/fall2018/homework.txt · Last modified: 2018/09/20 13:25 by fer