Bartle Professor
Ph.D., 1983, Michigan State University
At Binghamton since 1984 Areas of Interest: Statistics, probability Summary of research interests
E-mail:
aschick@binghamton.edu, anton@math.binghamton.edu
Office:
WH 135
Fax:
(607) 777-2450
Courses:
Spring 2025
Math 553
Section 01 :
Nonparametric Inference
TR 9:00 - 11:00
WH-329
Ph. D. Students:
Mengyu Chen, Spring, 2022 Thesis: An Empirical Likelihood Approach with Bivariate Data
Xiaojie Du, Spring, 2018 Thesis: Inference in Linear Regression with Symmetric Errors: An Empirical Likelihood Approach
Ruiqi Liu, Spring, 2018 Thesis: Identification and estimation in panel models with over specified number of groups
Nan Bi, Fall, 2016 Thesis: Empirical Likelihood for a Class of Semiparametric Regression Models
Yilin Zhu, Spring, 2016 Thesis: Estimation of the Error Distribution in a Varying Coefficient Regression Model
Peng Zhang, Fall, 2010 Thesis: Prediction in heteroskedastic autoregressive models
Jichang Du, Fall, 2007 Thesis: Covariate-matched estimator of the error variance in nonparametric regression
Jeffrey Forrester, Summer, 2001 Thesis: Efficient Estimation of the Regression Parameter in a Heteroscedastic Regression Model Where Heteroscedasticity is Modeled as a function of the mean response
William Hooper, Summer, 2001 Thesis: Efficient Estimation of Transformation Parameters in Nonparametric Regression
Hanxiang Peng, Summer, 2001 Thesis: Efficient Estimation of Linear Functionals of a Bivariate Probability with Equal Marginals