Loading [MathJax]/jax/output/HTML-CSS/jax.js

User Tools

Site Tools


calculus:resources:calculus_flipped_resources:applications:critical_points_tex

TeX code compiled with \documentclass{beamer} using the Amsterdam theme.

\begin{document} \begin{frame}     \large Sketch the graph of $y=(x-1)^2+2$ on the closed interval $[-4,4]$.             \vskip 15pt             \begin{itemize}                 \item[\bf (a)] What are the local maximum and minimum values? points?             \vskip 15pt                 \item[\bf (b)] What are the absolute maximum and minimum values? points?             \end{itemize} \end{frame} \begin{frame}     \large Find the critical number of the following functions             \vskip 15pt             \begin{itemize}                 \item[\bf (a)] $f(x) = 8x^3-12x^2-48x$             \vskip 15pt                 \item[\bf (b)] $g(x) = x^{\frac{3}{4}} - 9x^{\frac{1}{4}}$             \vskip 15pt                 \item[\bf (c)] $h(\theta) = 18\cos(\theta) + 9\sin^2(\theta)$             \end{itemize} \end{frame} \begin{frame}     \large Show that $5$ is a critical number of the function      $$g(x)=2+(x-5)^2$$ but $g$ does not have a local extreme value of $5$.     \vskip 60pt         If $f$ has a minimum value of $c$, does the function $g(x)=-f(x)$          have a maximum value of $c$? \end{frame} \end{document}

calculus/resources/calculus_flipped_resources/applications/critical_points_tex.txt · Last modified: 2014/08/29 08:33 (external edit)