Processing math: 9%

User Tools

Site Tools


people:fer:402ws:spring2019:homework

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

people:fer:402ws:spring2019:homework [2019/04/05 08:50]
fer
people:fer:402ws:spring2019:homework [2019/05/09 09:11] (current)
fer
Line 1: Line 1:
 +~~META:​title=Homework~~
  
 +<WRAP centeralign>​
 +===== Math 402 - 01 Homework (Spring 2019)=====
 +</​WRAP>​
 +{{page>​people:​fer:​402ws:​402ws_homework_header&​nofooter&​noeditbtn}}
 +----
 +{{page>​people:​fer:​402ws:​defs&​nofooter&​noeditbtn}}
 +
 +**Problem Set 10** (complete) Due: 05/10/2019
 +  - Let F be a field of characteristic zero, aF, and ξ=ξn a primitive n-th root of unity.  ​
 +    - Show by example that \galF(F(ξ)) need not be all of Un.
 +    - Show by example that \gal_{F(\xi)}(F(\xi,​\sq[n]{a})) need not be all of C_n.
 +  - Let G and H be solvable groups. ​ Prove that G\times H is solvable.
 +  -   Show that the change of variable y=x+(a/3) transforms the general cubic equation x^3+ax^2+bx+c = 0 into a depressed cubic. ​ Therefore, Cardano'​s formula is useful to solve any cubic equation.
 +
 +
 +**Problem Set 09** (complete) Due: 05/​03/​2019 ​ Board presentation:​ 05/10/2019
 +  - Prove that the homomorphism ​   \begin{array}{rccc} \psi:& U_n &​\to ​    &​\gal(\Q(\xi_n)/​\Q) \\         & ​ k  &​\mapsto &\psi_k \\ \end{array} is surjective and injective.
 +  - Let \xi_{15}=\cis(2\pi/​15) be a primitive 15-th root of unity.
 +    - Find the group \gal(\Q(\xi_{15})/​\Q) and draw its lattice of subgroups.
 +    - Find and draw the lattice of intermediate fields of the extension \Q(\xi_{15})/​\Q.
 +    - Write down the correspondence between the subgroups in part 1, and the subfields in part 2, using the Fundamental Theorem of Galois Theory.
 +  - Show that any non-abelian simple group is non-solvable. ​
 +  - Show that if d is a divisor of n then \Q(\xi_d) is a subfield of \Q(\xi_n). ​ Conclude that \varphi(d) divides \varphi(n),​ and U_d is a quotient of U_n.
 +
 +
 +**Problem Set 08** (complete) Due: 04/​26/​2019 ​ Board presentation:​ 05/03/2019
 +  - Prove the following corollary to the Fundamental Theorem of Galois Theory. ​ Use only the FTGT statements to prove it.    Let E/F be a (finite) Galois extension, with Galois group G=\gal_F(E). ​   Let L_1,​L_2\in\sub_F(E) and H_1,​H_2\in\sub(G). ​
 +    -  (L_1\meet L_2)^* = L_1^* \join L_2^*
 +    -  (L_1\join L_2)^* = L_1^* \meet L_2^* ​
 +    -  (H_1\meet H_2)^* = H_1^* \join H_2^*
 +    -  (H_1\join H_2)^* = H_1^* \meet H_2^*
 +  - Let f(x)\in\Q[x] be such that it has a non-real root.  Let E be the splitting field of f(x) over \Q.  Prove that \gal_\Q(E) has even order.
 +  - Consider the polynomial f(x)=x^3+2x^2+2x+2\in\Q[x],​ and E its splitting field over \Q.
 +    - Show that f(x) has exactly one real root. (Hint: use calculus)
 +    - Show that f(x) is irreducible over \Q.
 +    - Find [E:​\Q]. ​ Fully explain your calculation.
 +    - Determine \gal_\Q(E). ​
 +  - Consider the group S_n of all permutations of the set \{1,​2,​\dots,​n\}.
 +    - Show that the transpositions (1\ \ 2),(2\ \ 3),​\dots,​(n-1\ \ n) generate the whole group S_n.
 +    - Show that S_n is generated by the following two permutations:​ \rho = (1\ \ 2\ \ \dots\ \ n) \quad \text{and} \quad \sigma=(1\ \ 2) (Hint: conjugate \sigma by \rho.)
 +    - For p is a prime, \rho a p-cycle, and \sigma a transposition,​ show that \rho and \sigma generate S_p. ​ Show, by counterexample,​ that the hypothesis of p being prime cannot be removed. ​
 +
 +[[people:​fer:​402ws:​spring2019:​previous_homework|Previous Homework]]
 +
 +[[people:​fer:​402ws:​spring2019:​home| Home]]