User Tools

Site Tools


people:fer:402ws:spring2019:homework

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

people:fer:402ws:spring2019:homework [2019/04/05 08:50]
fer
people:fer:402ws:spring2019:homework [2019/05/09 09:11] (current)
fer
Line 1: Line 1:
 +~~META:​title=Homework~~
  
 +<WRAP centeralign>​
 +===== Math 402 - 01 Homework (Spring 2019)=====
 +</​WRAP>​
 +{{page>​people:​fer:​402ws:​402ws_homework_header&​nofooter&​noeditbtn}}
 +----
 +{{page>​people:​fer:​402ws:​defs&​nofooter&​noeditbtn}}
 +
 +**Problem Set 10** (complete) Due: 05/10/2019
 +  - Let $F$ be a field of characteristic zero, $a\in F$, and $\xi=\xi_n$ a primitive $n$-th root of unity.  ​
 +    - Show by example that $\gal_F(F(\xi))$ need not be all of $U_n$.
 +    - Show by example that $\gal_{F(\xi)}(F(\xi,​\sq[n]{a}))$ need not be all of $C_n$.
 +  - Let $G$ and $H$ be solvable groups. ​ Prove that $G\times H$ is solvable.
 +  -   Show that the change of variable $y=x+(a/3)$ transforms the general cubic equation \[ x^3+ax^2+bx+c = 0 \] into a depressed cubic. ​ Therefore, Cardano'​s formula is useful to solve any cubic equation.
 +
 +
 +**Problem Set 09** (complete) Due: 05/​03/​2019 ​ Board presentation:​ 05/10/2019
 +  - Prove that the homomorphism ​  \[ \begin{array}{rccc} \psi:& U_n &​\to ​    &​\gal(\Q(\xi_n)/​\Q) \\         & ​ k  &​\mapsto &\psi_k \\ \end{array}\] is surjective and injective.
 +  - Let $\xi_{15}=\cis(2\pi/​15)$ be a primitive $15$-th root of unity.
 +    - Find the group $\gal(\Q(\xi_{15})/​\Q)$ and draw its lattice of subgroups.
 +    - Find and draw the lattice of intermediate fields of the extension $\Q(\xi_{15})/​\Q$.
 +    - Write down the correspondence between the subgroups in part 1, and the subfields in part 2, using the Fundamental Theorem of Galois Theory.
 +  - Show that any non-abelian simple group is non-solvable. ​
 +  - Show that if $d$ is a divisor of $n$ then $\Q(\xi_d)$ is a subfield of $\Q(\xi_n)$. ​ Conclude that $\varphi(d)$ divides $\varphi(n)$,​ and $U_d$ is a quotient of $U_n$.
 +
 +
 +**Problem Set 08** (complete) Due: 04/​26/​2019 ​ Board presentation:​ 05/03/2019
 +  - Prove the following corollary to the Fundamental Theorem of Galois Theory. ​ Use only the FTGT statements to prove it.    Let $E/F$ be a (finite) Galois extension, with Galois group $G=\gal_F(E)$. ​   Let $L_1,​L_2\in\sub_F(E)$ and $H_1,​H_2\in\sub(G)$. ​
 +    -  $(L_1\meet L_2)^* = L_1^* \join L_2^*$
 +    -  $(L_1\join L_2)^* = L_1^* \meet L_2^*$ ​
 +    -  $(H_1\meet H_2)^* = H_1^* \join H_2^*$
 +    -  $(H_1\join H_2)^* = H_1^* \meet H_2^*$
 +  - Let $f(x)\in\Q[x]$ be such that it has a non-real root.  Let $E$ be the splitting field of $f(x)$ over $\Q$.  Prove that $\gal_\Q(E)$ has even order.
 +  - Consider the polynomial $f(x)=x^3+2x^2+2x+2\in\Q[x]$,​ and $E$ its splitting field over $\Q$.
 +    - Show that $f(x)$ has exactly one real root. (Hint: use calculus)
 +    - Show that $f(x)$ is irreducible over $\Q$.
 +    - Find $[E:​\Q]$. ​ Fully explain your calculation.
 +    - Determine $\gal_\Q(E)$. ​
 +  - Consider the group $S_n$ of all permutations of the set $\{1,​2,​\dots,​n\}$.
 +    - Show that the transpositions $(1\ \ 2),(2\ \ 3),​\dots,​(n-1\ \ n)$ generate the whole group $S_n$.
 +    - Show that $S_n$ is generated by the following two permutations:​ \[ \rho = (1\ \ 2\ \ \dots\ \ n) \quad \text{and} \quad \sigma=(1\ \ 2) \] (Hint: conjugate $\sigma$ by $\rho$.)
 +    - For $p$ is a prime, $\rho$ a $p$-cycle, and $\sigma$ a transposition,​ show that $\rho$ and $\sigma$ generate $S_p$. ​ Show, by counterexample,​ that the hypothesis of $p$ being prime cannot be removed. ​
 +
 +[[people:​fer:​402ws:​spring2019:​previous_homework|Previous Homework]]
 +
 +[[people:​fer:​402ws:​spring2019:​home| Home]]