User Tools

Site Tools


start

Welcome to the Homepage of
Department of Mathematics and Statistics

Calculus at Binghamton Check out the Problem of the Week.

The Department of Mathematics and Statistics (DOMS) is a vibrant community where mathematicians and statisticians converge to explore, innovate, and educate. We offer a comprehensive range of academic programs, spanning the bachelor's, master's, and doctoral levels. Thus, besides our faculty and postdoctoral visitors, our community includes a large and valuable cadre of hard-working and talented undergraduate and graduate students.

At the undergraduate level, we have two kinds of degrees: general degrees for majors in Mathematical Sciences are labeled Bachelor of Arts (BA), while our more intensive undergraduate degrees are labeled Bachelor of Science (BS). There is both a track in Mathematics and a track in Actuarial Science within each degree. For the BA degree, there is also a track in Statistics. For more details, see the page on the undergraduate programs. Additionally, we offer a minor in mathematics, enabling students from other disciplines to enrich their academic journey.

At the graduate level, we have the PhD in Mathematical Sciences, Master of Arts (MA) in Mathematics, and MA in Statistics degrees. There is also a 4+1 option for both the MA in Statistics program and the Master of Arts in Teaching program offered at the Department of Teaching, Learning, and Educational Leadership, allowing a student to obtain both a bachelor's degree and a master's degree within five years. Read the page on Graduate Programs for more details, including information about financial support for graduate students.

While our highest degree is a PhD in Mathematical Sciences, a significant number of our doctoral dissertations are written on research topics in Statistics.

All faculty members and postdoctoral visitors are active researchers. The main areas of concentration in the department are: Algebra, Analysis, Combinatorics, Geometry/Topology and Statistics. Additionally, there is active research that falls between and bridges the main areas. See the Research Areas page for more specific research topics.

The photos above were taken by Jinghao Li, Ph.D. 15'.



Latest Department News

Click here for the full news archive.

Betsy Gumustop (Ph.D. 1997) passed away

We are saddened by the news that Betsy Gumustop (Ph.D. 1997) has passed away. Here is a link to her obituary: Betsy Gumustop obituary.

2021/08/11 12:35

Phi Beta Kappa Visiting Scholar Ken Ono Lectures March 11-12, 2021

Phi Beta Kappa Visiting Scholar Prof. Ken Ono (Jefferson Professor of Mathematics, University of Virginia), (virtually) visited Binghamton University to give three talks, two on Thursday, March 11, and one on Friday, March 12, 2021. The titles and abstracts for these talks are below, and links to the Panopto recordings for each one are posted below. The public talk was aimed at a general audience was open to the entire Binghamton community.

Ken Ono is the Thomas Jefferson Professor of Mathematics at the University of Virginia and the Vice President of the American Mathematical Society. He earned his PhD from UCLA in 1993, and he has published several monographs and over 180 research and popular articles in number theory, combinatorics and algebra. Professor Ono has received many awards for his research, including a Guggenheim Fellowship, a Packard Fellowship and a Sloan Fellowship. He was awarded a Presidential Early Career Award for Science and Engineering (PECASE) by Bill Clinton in 2000 and he was named the National Science Foundation's Distinguished Teaching Scholar in 2005. He was also an associate producer of the 2016 Hollywood film “The Man Who Knew Infinity,” which starred Jeremy Irons and Dev Patel.

Thursday, March 11, 2021 at 2:50-3:50 Math Club Talk (for all undergraduates interested in math):

Title: What is the Riemann Hypothesis, and why does it matter?

Abstract. The Riemann hypothesis provides insights into the distribution of prime numbers, stating that the nontrivial zeros of the Riemann zeta function have a “real part” of one-half. A proof of the hypothesis would be world news and fetch a $1 million Millennium Prize. In this lecture, Ken  Ono will discuss the mathematical meaning of the Riemann hypothesis and why it matters. Along the way, he will tell tales of mysteries about prime numbers and highlight new advances.

Here is a link to a Panopto recording of Ken Ono's Math Club Talk for undergraduates.

Thursday, March 11, 2021 at 4:30-5:30 Colloquium Talk:

Title: Gauss’ Class Number Problem

Abstract. In 1798 Gauss wrote Disquisitiones Arithmeticae, the first rigorous text in number theory. This book laid the groundwork for modern algebraic number theory and arithmetic geometry. Perhaps the most important contribution in the work is Gauss's theory of integral quadratic forms, which appears prominently in modern number theory (sums of squares, Galois theory, rational points on elliptic curves,L-functions, the Riemann Hypothesis, to name a few). Despite the plethora of modern developments in the field, Gauss’s first problem about quadratic forms has not been optimally resolved. Gauss's class number problem asks for the complete list of quadratic form discriminants with class number h. The difficulty is in effective computation, which arises from the fact that the Riemann Hypothesis remains open. To emphasize the subtlety of this problem, we note that the first case, where h=1, remained open until the 1970s. Its solution required deep work of Heegner and Stark, and the Fields medal theory of Baker on linear forms in logarithms. Unfortunately, these methods do not generalize to the cases where h>1. In the 1980s, Goldfeld, and Gross and Zagier famously obtained the first effective class number bounds by making use of deep results on the Birch and Swinnerton-Dyer Conjecture. This lecture will tell the story of Gauss’s class number problem, and will highlight new work by the speaker and Michael Griffin that offers new effective results by different (and also more elementary) means.

Here is a link to a Panopto recording of Ken Ono's Colloquium Talk.

Friday, March 12, 2021 at 4:00-5:00, Public Lecture:

Title: Why does Ramanujan, “The Man Who Knew Infinity”, matter?

Abstract: This lecture is about Srinivasa Ramanujan, “The Man Who Knew Infinity.” Ramanujan was a self-trained two-time college dropout who left behind 3 notebooks filled with equations that mathematicians are still trying to figure out today. He claimed that his ideas came to him as visions from an Indian goddess. This lecture gives many reasons why Ramanujan matters today. The answers extend far beyond his legacy in science and mathematics. The speaker was an Associate Producer of the film “The Man Who Knew Infinity” (starring Dev Patel and Jeremy Irons) about Ramanujan. He will share several clips from the film in the lecture, and will also tell stories about the production and promotion of the film.

Here is a link to a Panopto recording of Ken Ono's Public Talk on Ramanujan.

2021/02/04 12:40

<< Newer entries | Older entries >>

Suggestions and comments about the website can be sent to webmaster@math.binghamton.edu

start.txt · Last modified: 2024/08/28 13:18 by qiao