Activities
Student Organizations
Math Club
BingAWM
Actuarial Association
This is an old revision of the document!
The seminar will meet in-person on Tuesdays in room WH-100E at 2:45 p.m. There should be refreshments served at 3:45 in our new lounge/coffee room, WH-104. Masks are optional.
Anyone wishing to give a talk in the Algebra Seminar this semester is requested to contact the organizers at least one week ahead of time, to provide a title and abstract. If a speaker prefers to give a zoom talk, the organizers will need to be notified at least one week ahead of time, and a link will be posted on this page.
If needed, the following link would be used for a zoom meeting (Meeting ID: 93487611842) of the Algebra Seminar:
Algebra Seminar Zoom Meeting Link
Organizers: Alex Feingold, Daniel Studenmund and Hung Tong-Viet
To receive announcements of seminar talks by email, please email one of the organizers with your name, email address and reason for joining this list if you are external to Binghamton University.
Please think about giving a talk in the Algebra Seminar, or inviting an outside speaker.
Abstract: Let $G$ be a group. The commuting graph $\mathfrak{C}(G)$ for $G$ is the graph whose vertices are $G-Z(G)$ and if $a, b \in G-Z(G)$, $a \neq b$, then there is an edge between $a$ and $b$ if $ab = ba$. A close cousin of $\mathfrak{C}(G)$ is the centralizer graph, which we define. When a connected component of $\mathfrak{C}(G)$ is a complete graph, the corresponding component in the centralizer graph is an isolated vertex, and we call such a component trivial. Otherwise, the natural bijection between the commuting graph and the centralizer graph preserves the diameter of connected components.
One sees that if $G$ is a Frobenius group with a nonabelian kernel and a nonabelian complement where the complement has nontrivial center, then the centralizer graph of $G$ has more than one nontrivial component. Can this happen in a $p$-group? The answer is yes! In fact, for any specified number $k$ of nontrivial components and any diameter sizes $n_1,\dots, n_k$, one can construct a $p$-group of nilpotency class 2 whose centralizer graph has these specs. This is joint work with Mark Lewis.
Abstract: In this talk, we will discuss the properties of finite groups that are witnessed by the group invariants arising in the context of Dijkgraaf-Witten theory, a topological quantum field theory, as invariants of surfaces. Assuming the theory is derived from the complex group algebra of a finite group, these invariants are generalizations of the commuting probability, an invariant that has been well studied in the literature. The main goal of this talk is to construct these invariants from scratch, assuming no previous knowledge of quantum mechanics.
Abstract: Text of Abstract
Abstract: Text of Abstract
Abstract: Text of Abstract
Abstract: Text of Abstract
Abstract: Text of Abstract
Abstract: Text of Abstract
Abstract: Text of Abstract
Abstract: Text of Abstract
Abstract: Text of Abstract
Abstract: Text of Abstract