User Tools

Site Tools


seminars:comb:start

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

seminars:comb:start [2025/10/26 14:42]
zaslav [FALL 2025]
seminars:comb:start [2025/11/16 15:28] (current)
zaslav [FALL 2025]
Line 119: Line 119:
 **Tuesday, 10/21**\\ **Tuesday, 10/21**\\
 No seminar today. \\ No seminar today. \\
-Time: 1:30-2:30\\ 
 Location: ​ WH 100E\\ Location: ​ WH 100E\\
 <​HTML></​li></​HTML>​ <​HTML></​li></​HTML>​
Line 125: Line 124:
 <​HTML><​li></​HTML>​ <​HTML><​li></​HTML>​
 **Tuesday, 10/28**\\ **Tuesday, 10/28**\\
-Speaker: \\ +The seminar takes a holiday today.\\
-Title: \\ +
-Time: 1:30-2:30\\+
 Location: ​ WH 100E\\ Location: ​ WH 100E\\
 <​HTML></​li></​HTML>​ <​HTML></​li></​HTML>​
  
 <​HTML><​li></​HTML>​ <​HTML><​li></​HTML>​
-**Tuesday, 11/4**\\+**Tuesday, 11/4**  **Cancelled**\\
 Speaker: Brendon Rhoades (U.C. San Diego)\\ Speaker: Brendon Rhoades (U.C. San Diego)\\
-Title: ​TBA\\+Title: ​Matrix Loci and Shadow Play\\
 Time: 1:30-2:30\\ Time: 1:30-2:30\\
 Location: ​ WH 100E\\ Location: ​ WH 100E\\
 +
 +Let lis$(w)$ be the length of the longest increasing subsequence of a permutation $w$ in $S_n$. I describe a graded quotient $R_n$ of the polynomial ring over an $n$-by-$n$ matrix of variables whose Hilbert series is the generating function of lis, up to reversal. The Gröbner theory of $R_n$ is governed by the Viennot shadow avatar of the Schensted correspondence. The ring $R_n$ is constructed via the orbit harmonics technique of deformation theory. ​
 +
 +I will give some related results and open problems. ​
 +
 +Joint with Jasper Liu, Yichen Ma, Jaeseong Oh, and Hai Zhu.
 <​HTML></​li></​HTML>​ <​HTML></​li></​HTML>​
  
Line 142: Line 145:
 **Tuesday, 11/11**\\ **Tuesday, 11/11**\\
 Speaker: Tan Tran (Binghamton)\\ Speaker: Tan Tran (Binghamton)\\
-Title: \\+Title: ​Vine Copulas, MAT-Labeled Graphs, and Single-Peaked Domains: A Three-Way Correspondence\\
 Time: 1:30-2:30\\ Time: 1:30-2:30\\
 Location: ​ WH 100E\\ Location: ​ WH 100E\\
 +
 +Last year, I discussed an unexpected link between vine copulas—graphical models used in statistics—and MAT-labeled graphs, which arise in algebraic graph theory through the study of free hyperplane arrangements.
 +
 +This year, I’ll add a third piece to the picture. With H. M. Tran and S. Tsujie, I recently found that these structures are also closely connected to single-peaked domains in voting theory. In particular, MAT-labeled complete graphs, regular vines, and maximal Arrow’s single-peaked domains turn out to be three different manifestations of the same underlying combinatorial framework. This connection brings together ideas from algebraic combinatorics,​ probabilistic modeling, and social choice. As a consequence of this correspondence,​ we obtain a complete combinatorial characterization of maximal Arrow’s single-peaked domains, resolving a recent open question in the economics community.
 +
 <​HTML></​li></​HTML>​ <​HTML></​li></​HTML>​
  
 <​HTML><​li></​HTML>​ <​HTML><​li></​HTML>​
-**Tuesday, 11/18**\\ +**Tuesday, 11/​18** ​(joint with the Arithmetic Seminar)\\ 
-Speaker: \\ +Speaker: ​Jaeho Shin (Seoul National University)\\ 
-Title: \\ +Title: ​Biconvex Polytopes and Tropical Linear Spaces\\ 
-Time: 1:30-2:30\\+Time: **Special time** 4:00-5:00\\
 Location: ​ WH 100E\\ Location: ​ WH 100E\\
 +
 +Tropical geometry is geometry over exponents of algebraic expressions,​ using the "​logarithmized"​ operations (min,+) or (max,+). In this setting, one can define tropical convexity and the related notion of biconvex polytopes, which are convex both classically and tropically. There is also a tropical analogue of linear spaces, called tropical linear spaces. Sturmfels conjectured that every biconvex polytope arises as a cell of a tropical linear space. In this talk, I will outline a proof of this conjecture.
 <​HTML></​li></​HTML>​ <​HTML></​li></​HTML>​
  
 <​HTML><​li></​HTML>​ <​HTML><​li></​HTML>​
 **Tuesday, 11/25**\\ **Tuesday, 11/25**\\
-Speaker: \\ +Speaker: ​Xiyong Yan (Binghamton)\\ 
-Title: \\+Title: ​Realization and Classification of Hamiltonian-Circle Multisigns\\
 Time: 1:30-2:30\\ Time: 1:30-2:30\\
 Location: ​ WH 100E\\ Location: ​ WH 100E\\
 +
 +We investigate the multisigns of Hamiltonian circles in the multisigned complete graph \(\Sigma_n := (K_n, \sigma, \mathbb{F}_2^m)\). For a fixed \(m\) and sufficiently large \(n\), I prove that the set of multisigns of Hamiltonian circles \(\{\sigma(H) : H \text{ is a Hamiltonian circle of } \Sigma_n\}\) forms either a subspace, an affine subspace, or the entire space \(\mathbb{F}_2^m\),​ except in certain exceptional cases.
 +
 +The main tools used are the \(C_4\) Necklace Lemma and triangular paths. ​
 <​HTML></​li></​HTML>​ <​HTML></​li></​HTML>​
  
 <​HTML><​li></​HTML>​ <​HTML><​li></​HTML>​
 **Tuesday, 12/2**\\ **Tuesday, 12/2**\\
-Speaker: \\ +Another working holiday today.\\
-Title: \\ +
-Time: 1:30-2:30\\+
 Location: ​ WH 100E\\ Location: ​ WH 100E\\
 <​HTML></​li></​HTML>​ <​HTML></​li></​HTML>​
seminars/comb/start.1761504149.txt · Last modified: 2025/10/26 14:42 by zaslav