Processing math: 4%

User Tools

Site Tools


people:fer:401ws:fall2018:daily_topics

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

people:fer:401ws:fall2018:daily_topics [2018/11/02 16:31]
fer
people:fer:401ws:fall2018:daily_topics [2018/11/19 08:57] (current)
fer
Line 1: Line 1:
 +~~META:​title=Daily topics~~
  
 +<WRAP centeralign>​
 +===== Math 401 - 01 Daily Topics - part 2 (Fall 2018)=====
 +</​WRAP>​
 +----
 +{{page>​people:​fer:​401ws:​defs&​nofooter&​noeditbtn}}
 +
 +
 +[[people:​fer:​401ws:​fall2018:​home| Home]]
 +
 +^Week 7^Topics^
 +|10/​01/​2018|Test 1 |
 +|10/​02/​2018|Lagrange'​s corollary 1 |
 +| |Orbit-Stabilizer theorem |
 +| |Examples: cube, truncated icosahedron (soccer ball) |
 +|10/​03/​2018|Corollaries 2-5 to Lagrange'​s theorem |
 +| |Addendum to cor 3: moreover, there is a unique group of order p, up to isomorphism.|
 +| |Thm. 7.2|
 +| |Example 6, p.144|
 +| |Corollary: if p is the smallest prime divisor of |G| and p2 does not divide |G|, then G has at most one subgroup of index p (HW)|
 +|10/​05/​2018|Thm. 7.3|
 +
 +^Week 8^Topics^
 +|10/​08/​2018|Test 1 returned and reviewed|
 +| |Prop: if \varphi:​G\to H is an isomorphism,​ then so is \varphi^{-1}H\to G.|
 +| |Prop: "​isomorphic to" is an equivalence relation|
 +| |Thm. 6.1 Cayley'​s theorem|
 +| |\aut(G), \inn(G)|
 +|10/​09/​2018|Thm 6.4 \aut(G) is a group and \inn(G) is a subgroup of \aut(G)|
 +| |Example: \inn(D_4) \isom K_4|
 +| |Prop: Let G = <a> cyclic and H a group|
 +| |1. A homom \varphi:​G\to H is uniquely determined by \varphi(a).|
 +| |2. If G has order n and u\in H has order d where d|n, then there is (unique) homomorphism \varphi:​G\to H s.t. \varphi(a)=u. Moreover, \varphi is injective iff d=n.|
 +| |3. If G has infinite order and u\in H, then there is (unique) homomorphism \varphi:​G\to H s.t. \varphi(a)=u. ​ Moreover, \varphi is injective iff u has infinite order.|
 +| |Example: \aut(\Z_n) \isom U_n|
 +|10/​10/​2018|Board presentations PS 6|
 +| |Thms. 10.2 and 6.3|
 +|10/​12/​2018|Fall break|
 +
 +^Week 9^Topics^
 +|10/​15/​2018|Prop. Let N \leq G. TFAE|
 +| |(i)   ​gNg^{-1} \subseteq N  for all g\in G|
 +| |(ii)  gNg^{-1} = N  for all g\in G|
 +| |(iii) gN = Ng for all g\in G|
 +| |(iv)  the product of any two left cosets is a left coset.|
 +| |Moreover, in the last one, we have (gN)(hN) = ghN|
 +| |Def:  normal subgroup|
 +| |Examples: 1. A_n \normaleq S_n|
 +| | <​R_{360/​n}>​ \normaleq D_n|
 +| |Prop: if H is a subgroup of G of index 2, then H is a normal subgroup of G|
 +| |2. Prop: if \varphi:​G\to \bar{G} is a homomorphism,​ then ker(\varphi) is a normal subgroup of G|
 +| |3. If G is abelian, then every subgroup of G is normal|
 +| |4. Z(G) is a normal subgroup of G.|
 +| |5. G and \{1\} are normal subgroups of G.|
 +| |Thm 9.2  proof using (iv) above.|
 +| |Example 9.10  Generalize ​ \Z/n\Z \isom \Z_n|
 +|10/​16/​2018| ​ Example 9.12|
 +| |Thm 10.3  1st Isom Thm|
 +| |Example \varphi:\Z \to \Z_n|
 +| |Thm 9.4|
 +| |Thm (N/C theorem) Let H \leq GN_G(H) / C_G(H) is isomorphic to a subgroup of \aut(H).|
 +|10/​17/​2018| proof of N/C theorem|
 +| |Example 10.17  |G|=35|
 +| |Thm 9.3|
 +| |Corollary: ​ If |G|=pq and Z(G) \neq 1 then G is abelian.|
 +| |Thm 9.5  Cauchy'​s thm for abelian gps.|
 +|10/​19/​2018|Thm 10.4 N\normaleq Gq:G \to G/N is an epimorphism with ker(q)=N|
 +| |Chapter 8 Direct Product|
 +| |Def:  G_1 \oplus G_2|
 +| |Prop: 1)  G_1 \oplus G_2 is a group.|
 +| |2) If G_1, G_2 are abelian then so is G_1 \oplus G_2.|
 +| |3) If G_1, G_2 are finite then so is G_1 \oplus G_2 and | G_1 \oplus G_2| = |G_1|\cdot |G_2|
 +| |Examples: (1) \Z_2 \oplus \Z_3 is abelian of order 6, so it is isomorphic to \Z_6|
 +| |(2) G \oplus \{1\} \isom G \isom \{1\}\oplus G|
 +| |Prop: Let H_1 \leq G_1 and H_2 \leq G_2.  Then H_1 \oplus H_2 \leq G_1 \oplus G_2
 +| |Cor:  G_1 \oplus G_2 contains subgroups isomorphic to G_1 and G_2 respectively.|
 +| |Def:  G_1 \oplus \cdots \oplus G_n|
 +| |Thm 8.1|
 +
 +^Week 10^Topics^
 +|10/​22/​2018|Thm 8.2  G_1, G_2 finite. ​ G_1 \oplus G_2 is cyclic iff G_1 and G_2 are cyclic or relatively prime orders.|
 +|10/​23/​2018|RSA cryptography. Public vs private keys|
 +| |Prop: m^{ed}\equiv m \pmod n.|
 +| |Internal direct product|
 +| |Thm.: Let H,K\leq G be such that HK=G and H\intersection K=\{1\}. Then G\isom H\oplus K.|
 +| |Def: When H,K\leq G are such that HK=G and H\intersection K=\{1\}, we say that G is the internal direct product of H and K, and write G=H\times K. |
 +| |Example: Consider D_n with n=2m and m odd. |
 +| |Thm. 9.7 and corollary|
 +| |Prop: Let H,N\leq G.|
 +| |(1) If N\normaleq G then HN\leq G.|
 +| |(2) If H,​N\normaleq G then HN\normaleq G|
 +|10/​24/​2018|2nd,​ 3rd, 4th and 5th isomorphism theorems.|
 +| |\sub(D_4) and \sub(V_4) as examples.|
 +|10/​26/​2018|Thm If G is a finite abelian group of order n, and m|n then G has a subgroup of order m.|
 +| |Fund. Thm. of Finite Abelian Groups|
 +| |Statement and examples, n=12 and n=600|
 +| |Elementary divisors form, and invariant factors form|
 +
 +^Week 11^Topics^
 +|10/​29/​2018|Board presentations. Problems sets 7 and 8|
 +|10/​30/​2018|Ch.24 Def: conjugate, conjugate class \cl(a).|
 +| |Prop: (1) "​conjugate to" is an equivalence relation. The equivalence classes are the conjugacy classes.|
 +| |(2) \cl(a)=\{a\} \iff a\in Z(G)|
 +| |Thm. 24.1 without finite assumption|
 +| |Cor. 1|
 +| |Thm. Class equation (2 versions)|
 +| |Thm. 24.2 A non-trivial p-group has non-trivial center.|
 +| |Def: Finite p-group. ​ Metabelian group.|
 +| |Cor. Let p be a prime. If |G|=p^2, then G is abelian.|
 +| |Cor. Let p be a prime. If |G|=p^3, then G is metabelian. Moreover, |Z(G)|=p or |Z(G)|=p^3.|
 +| |Example: Heisenber group H has order p^3, and is not abelian. |
 +|10/​31/​2018|Thm. 24.3 Sylow'​s 1st Theorem|
 +| |Cor. Cauchy'​s theorem|
 +| |Cor. If |G|=pq where p<q are primes and p\not\mid (q-1), then G is cyclic. |
 +| |Lemma 1. (1) Let H\leq G and C=\{gHg^{-1}\mid g\in G\} the set of all conjugates of H. Then |C|=[G:​N_G(H)].|
 +| |Definition of Sylow p-subgroup. |
 +| |(2) Let H,K\leq G. If HK=KH then HK\leq G.|
 +| |Lemma 2. Let P be a Sylow p-subgroup G. If g\in N_G(P) and |g| is a power of p, then g\in P.|
 +| |Lemma 3. Let |G|=p^km and p\not\mid m. Let P be a Sylow p-subgroup of G, i.e. |P|=p^k, and H\leq G with |H|=p^l for some l\leq k. Then there is a conjugate of P that contains H, i.e. there is g\in G such that H\leq gPg^{-1}. |
 +|11/​02/​2018|Board presentations. Problems set 9|
 +| |Proof of Lemma3|
 +
 +^Week 12^Topics^
 +|11/​05/​2018|Sylow Theorems |
 +| |Examples: (1) |G|=35 <​html>&​nbsp;&​nbsp;</​html>​ (2) |G|=455 <​html>&​nbsp;&​nbsp;</​html>​ (3) |G|=21 <​html>&​nbsp;&​nbsp;</​html>​ (4) |G|=256|
 +|11/​06/​2018|Test 2|
 +|11/​07/​2018|Rings. Definitions:​ ring, unity, ring with unity (unitary ring), commutative ring, units of a unitary ring|
 +| |Examples|
 +| |Prop: The units of a ring, U(R) form a multiplicative group.|
 +|11/​09/​2018|No class.|
 +
 +[[people:​fer:​401ws:​fall2018:​daily_topics_3|Daily topics (3)]]
 +
 +[[people:​fer:​401ws:​fall2018:​home| Home]]