seminars:alge

# Differences

This shows you the differences between two versions of the page.

seminars:alge [2019/03/04 14:47]
alex
seminars:alge [2019/09/22 21:30] (current)
tongviet
Line 1: Line 1:
+~~META:​title=Fall 2019~~

+<WRAP center box 68%>
+[[http://​www-history.mcs.st-and.ac.uk/​Biographies/​Galois.html|{{http://​www.win.tue.nl/​~aeb/​at/​mathematicians/​galois1.jpg?​110*135 |Evariste Galois}}]] ​  [[ http://​www-history.mcs.st-and.ac.uk/​Mathematicians/​Noether_Emmy.html|{{ http://​seminars.math.binghamton.edu/​AlgebraSem/​emmy_noether.jpg?​110*135|Emmy Noether}}]]
+\\  \\
+ <​WRAP centeralign>​
+**#####The Algebra Seminar#####​**
+</​WRAP></​WRAP>​
+
+Unless stated otherwise, the seminar meets Tuesdays in room WH-100E at 2:50 p.m. There will be refreshments served at 4:00 in room WH-102.
+
+Organizers: [[:​people:​alex:​start|Alex Feingold]] and [[:​people:​tongviet:​start|Hung Tong-Viet]]
+
+To receive announcements of seminar talks by email, please join the seminar'​s [[http://​www1.math.binghamton.edu/​mailman/​listinfo/​algsem|mailing list]].
+
+
+----
+
+=====Fall 2019=====
+
+   * **August 27**\\ Organizational meeting
+
+   * **September 3**\\ <​html>​ <span style="​color:​blue;​font-size:​120%">​Casey Donoven </​span></​html>​(Binghamton University) \\ **//​Automata acting on Fractal Spaces//** \\    \\  <WRAP center box 90%> **//​Abstract//​**:​ A self-similar set is a set that is a union of scaled copies of itself. ​ Through iterated labeling of the $n$ copies, $n^2$ subcopies, and so on, we create a correspondence between infinite sequences over an n letter alphabet and points in the self-similar set.  Automata act naturally on infinite sequence, and I will explore groups of homeomorphisms of semi-similar sets induced by automata. ​ I will focus on two examples, the unit interval and Julia set associated to the map $z^2+i$. ​ An important tool in the construction of the automata is the approximation of these self-similar sets as finite graphs. ​
+
+</​WRAP>​
+
+   * **September 10**\\ <​html>​ <span style="​color:​blue;​font-size:​120%">​Matt Evans </​span></​html>​(Binghamton University) \\ **//​BCK-algebras and generalized spectral spaces
+//** \\    \\  <WRAP center box 90%> **//​Abstract//​**:​ Commutative BCK-algebras are the algebraic semantics of a non-classical logic. Mimicing the
+construction of the spectrum of a commutative ring (or Boolean algebra or distributive lattice),
+we can construct the spectrum of a commutative BCK-algebra.
+
+A topological space is called *spectral* if it is homeomorphic to the spectrum of some commutative
+ring, and *generalized spectral* if it is homeomorphic to the spectrum of a distributive lattice
+with 0.
+
+In this talk I will briefly discuss Hochster'​s characterization of spectral spaces, and then show
+that the spectrum of a commutative BCK-algebra is generalized spectral.
+</​WRAP>​
+
+   * **September 17**\\ <​html>​ <span style="​color:​blue;​font-size:​120%">​Jonathan Doane </​span></​html>​(Binghamton University) \\ **// Dualizing Kleene Algebras//​** \\    \\  <WRAP center box 90%> **//​Abstract//​**:​ It is well-known that the class of Boolean algebras is "​generated"​ by
+the two element chain $F<T$ equipped with negation $\neg F:= T$, $\neg +T:=F$.
+When we include an uncertainty element $F<​U<​T$,​ along with negation $\neg +U: =U$, we generate the class of Kleene algebras.
+Of course, there is a famous correspondence between Boolean algebras and
+Boolean topological spaces, named Stone duality;
+this leads us to wonder if we can somehow represent Kleene algebras by
+topological spaces as well.
+In fact, Stone duality is but an application of a more general theory of
+dual equivalences between categories.
+In this talk, we will utilize this theory to construct a dual equivalence
+between the categories of Kleene algebras
+and certain topological spaces.
+</​WRAP>​
+
+   * **September 24**\\ <​html>​ <span style="​color:​blue;​font-size:​120%">​David Biddle </​span></​html>​(Binghamton University) \\ **//​Generating tuples of direct products of finite simple groups//** \\    \\  <WRAP center box 90%> **//​Abstract//​**: ​ For any group $G$ we can define the $n^{th}$ Eulerian function
+$\phi_n(G)$,​ to be the number of tuples in $G^n$ that generate $G$ and the rank
+of $G$ to be the smallest integer $d=d(G)$ so that $G$ has a generating set of
+size $d$. We will show that if we define the reduced Eulerian function to be
+$r_n(G):​=\phi_n(G)/​|\text{Aut}(G)|$,​ that for $S$ finite simple and $n \geq 2$,
+$\text{rank}(S^{r_n(S)})=n$ precisely. This has been famously used to show for
+instance that $\text{rank}((A_5)^{20})=3$ while $\text{rank}((A_5)^{19})=2$.
+</​WRAP>​
+
+   * **October 1**\\ <​html>​ <span style="​color:​blue;​font-size:​120%">​No Classes </​span></​html>​(University) \\ **//​Title//​** \\    \\  <WRAP center box 90%> **//​Abstract//​**:​ Abstract
+</​WRAP>​
+
+   * **October 8**\\ <​html>​ <span style="​color:​blue;​font-size:​120%">​Ben Brewster </​span></​html>​(Binghamton University) \\ **//​Title//​** \\    \\  <WRAP center box 90%> **//​Abstract//​**:​ Abstract
+</​WRAP>​
+
+   * **October 15**\\ <​html>​ <span style="​color:​blue;​font-size:​120%">​Fikreab Admasu </​span></​html>​(Binghamton University) \\ **//​Title//​** \\    \\  <WRAP center box 90%> **//​Abstract//​**:​ Abstract
+</​WRAP>​
+
+
+   * **October 22**\\ <​html>​ <span style="​color:​blue;​font-size:​120%">​Eran Crockett </​span></​html>​(Binghamton University) \\ **//​Title//​** \\    \\  <WRAP center box 90%> **//​Abstract//​**:​ Abstract
+</​WRAP>​
+
+
+   * **October 29**\\ <​html>​ <span style="​color:​blue;​font-size:​120%">​Speaker </​span></​html>​(University) \\ **//​Title//​** \\    \\  <WRAP center box 90%> **//​Abstract//​**:​ Abstract
+</​WRAP>​
+
+   * **November 5**\\ <​html>​ <span style="​color:​blue;​font-size:​120%">​Luise Kappe </​span></​html>​(Binghamton University) \\ **//​Title//​** \\    \\  <WRAP center box 90%> **//​Abstract//​**:​ Abstract
+</​WRAP>​
+
+   * **November 12**\\ <​html>​ <span style="​color:​blue;​font-size:​120%">​Dikran Karagueuzian </​span></​html>​(Binghamton University) \\ **//​Title//​** \\    \\  <WRAP center box 90%> **//​Abstract//​**:​ Abstract
+</​WRAP>​
+
+   * **November 19**\\ <​html>​ <span style="​color:​blue;​font-size:​120%">​Zach Costanzo </​span></​html>​(Binghamton University) \\ **//​Title//​** \\    \\  <WRAP center box 90%> **//​Abstract//​**:​ Abstract
+</​WRAP>​
+
+   * **November 26**\\ <​html>​ <span style="​color:​blue;​font-size:​120%">​Speaker </​span></​html>​(University) \\ **//​Title//​** \\    \\  <WRAP center box 90%> **//​Abstract//​**:​ Abstract
+</​WRAP>​
+
+
+   * **December 3 **\\ <​html>​ <span style="​color:​blue;​font-size:​120%">​Speaker </​span></​html>​(University) \\ **//​Title//​** \\    \\  <WRAP center box 90%> **//​Abstract//​**:​ Abstract
+</​WRAP>​
+
+
+----
+----
+  * [[http://​seminars.math.binghamton.edu/​AlgebraSem/​index.html|Pre-2014 semesters]]\\
+  * [[seminars:​alge:​fall2014]]
+  * [[seminars:​alge:​spring2015]]
+  * [[seminars:​alge:​alge_fall2015]]
+  * [[seminars:​alge:​alge-spring2016]]
+  * [[seminars:​alge:​alge-fall2016]]  ​
+  * [[seminars:​alge:​alge-Spring2017|Spring 2017]]
+  * [[seminars:​alge:​alge-fall2017]]
+  * [[seminars:​alge:​alge-Spring2018|Spring 2018]]
+
+<​html>​