##Statistics Seminar##\\ Department of Mathematical Sciences
^ **DATE:**|Thursday, Oct. 22, 2020 |
^ **TIME:**|1:15pm -- 2:15pm |
^ **LOCATION:**|zoom meeting |
^ **SPEAKER:**|Baozhen Wang, Binghamton University |
^ **TITLE:**|Conformal Prediction Under Covariate Shift |
\\
**Abstract**
The authors extend conformal prediction methodology beyond the
case of exchangeable data. In particular, they show that a weighted
version of conformal prediction can be used to compute distribution-free
prediction intervals for problems in which the test and training covariate
distributions differ, but the likelihood ratio between these two
distributions is known—or, in practice, can be estimated accurately with
access to a large set of unlabeled data (test covariate points). Their
weighted extension of conformal prediction also applies more generally, to
settings in which the data satisfies a certain weighted notion of
exchangeability.