

Colloquium

Unless stated otherwise, colloquia are scheduled for Thursdays 4:00-5:00pm in WH-100E with refreshments served from 3:45-4:00 pm in WH-102.

Organizers: Michael Dobbins, Vladislav Kargin, Cary Malkiewich, Adrian Vasiu, and Emmett Wyman

Fall 2025

Thursday Nov 6 4:00-5:00pm, WH-100E

Speaker: **Andrew Obus** (CUNY)

Topic: ***The lifting problem for covers of curves, particularly its group-theoretical aspects***

Abstract: Whenever a mathematical object is given in characteristic p , one can ask whether it is the reduction, in some sense, of an analogous structure in characteristic zero. If so, the structure in characteristic zero is called a “lift” of the structure in characteristic p . The most famous example is Hensel’s Lemma about lifting solutions of polynomials in \mathbb{Z}/p to solutions in the p -adic integers \mathbb{Z}_p .

The “lifting problem” we consider is more geometric: given a smooth curve X in characteristic p with an action of a finite group G , is there a curve in characteristic zero with G -action that reduces to X ? Unsurprisingly, the answer is related to the group theory of G (for instance, if p does not divide $|G|$ or if G is cyclic, then the curve with the G -action always lifts, but if G has an abelian, non-cyclic, non- p -subgroup that fixes a point on X , then the curve does not lift with the action). After giving an introduction to the lifting problem and some examples, we will discuss well-established ways that the problem interacts with group theory, as well as more recent advances relating the problem to representation theory.

Archive:

- [2016-2017](#)
- [2017-2018](#)
- [2018-2019](#)
- [2019-2020](#)
- [2020-2021](#)
- [2021-2022](#)
- [2022-2023](#)
- [2023-2024](#)

From:

<http://www2.math.binghamton.edu/> - **Department of Mathematics and Statistics, Binghamton University**

Permanent link:

<http://www2.math.binghamton.edu/p/seminars/colloquium>

Last update: **2025/11/03 19:38**