November 6 (Tuesday)
Speaker: Marie Langlois (Cornell)
Title: Building Variable Homogeneous Integer-valued Polynomials Using Projective Planes
Abstract: A polynomial $f$ over $\mathbb{Q}[x,y,z]$ is integer-valued if $f(x,y,z)\in \mathbb{Z}$, whenever $x,\ y$ and $z$ are integers. This talk will go over various examples of these and general techniques to find bases for the modules they create. Then, the focus will be on the case of $f$ being homogeneous and how to construct polynomials such that the denominators are divisible by the highest possible power of $p=2$. Projective H-planes will be introduced, which are a generalization of finite projective planes over rings, to construct a correspondence between lines that cover H-planes and homogeneous IVPs that are a product of linear factors. This correspondence will be illustrated starting with the degree 8 case where we produce a polynomial with the largest possible denominator which factors as a product of linear polynomials.