

Problem 3 (due Monday, October 9)

Given a sequence a_1, a_2, \dots, a_n of n real numbers we construct a new sequence of $n-1$ numbers as follows: first we set $b_i = \max(a_i, a_{i+1})$ for $i=1, \dots, n-1$. Then we choose randomly one index i and add 1 to b_i . This is our new sequence. After repeating this operation $n-1$ times we arrive at a single number A . Prove that if $a_1 + \dots + a_n = 0$, then $A \geq \log_2 n$.

Here $\max(a, b)$ denotes the larger of the numbers a, b .

We did not receive any solutions. The key idea for our solution is to observe that the quantity $2^{a_1} + \dots + 2^{a_n}$ is a monovariant for our operation on sequences, i.e. that this quantity computed for the new sequence is larger or equal than the quantity for the original sequence. It follows that $2^A \geq 2^{a_1} + \dots + 2^{a_n}$. By the AMGM inequality (the arithmetic mean is always greater or equal than the geometric mean), we have $2^{a_1} + \dots + 2^{a_n} \geq n$, hence $A \geq \log_2 n$. For a detailed solution and some additional discussion see the following link [Solution](#).

From:

<https://www2.math.binghamton.edu/> - **Department of Mathematics and Statistics, Binghamton University**

Permanent link:

<https://www2.math.binghamton.edu/p/pow/problem3f23>

Last update: **2023/10/10 21:23**