Processing math: 0%

Math 504 - Homework


\newcommand{\aut}{\textrm{Aut}} \newcommand{\end}{\textrm{End}} \newcommand{\sub}{\textrm{Sub}} \newcommand{\min}{\textrm{min}} \newcommand{\lub}{\textrm{l.u.b.}} \newcommand{\glb}{\textrm{g.l.b.}} \newcommand{\join}{\vee} \newcommand{\bigjoin}{\bigvee} \newcommand{\meet}{\wedge} \newcommand{\bigmeet}{\bigwedge} \newcommand{\normaleq}{\unlhd} \newcommand{\normal}{\lhd} \newcommand{\union}{\cup} \newcommand{\intersection}{\cap} \newcommand{\bigunion}{\bigcup} \newcommand{\bigintersection}{\bigcap} \newcommand{\sq}[2][\ ]{\sqrt[#1]{#2\,}} \newcommand{\pbr}[1]{\langle #1\rangle} \newcommand{\ds}{\displaystyle} \newcommand{\C}{\mathbb{C}} \newcommand{\R}{\mathbb{R}} \newcommand{\Q}{\mathbb{Q}} \newcommand{\Z}{\mathbb{Z}} \newcommand{\N}{\mathbb{N}} \newcommand{\A}{\mathbb{A}} \newcommand{\F}{\mathbb{F}} \newcommand{\T}{\mathbb{T}} \newcommand{\ol}[1]{\overline{#1}} \newcommand{\ul}[1]{\underline{#1}} \newcommand{\imp}{\Rightarrow} \newcommand{\rimp}{\Leftarrow} \newcommand{\pinfty}{1/p^\infty} \newcommand{\power}{\mathcal{P}} \newcommand{\calL}{\mathcal{L}} \newcommand{\calC}{\mathcal{C}} \newcommand{\calN}{\mathcal{N}} \newcommand{\calB}{\mathcal{B}} \newcommand{\calF}{\mathcal{F}} \newcommand{\calR}{\mathcal{R}} \newcommand{\calS}{\mathcal{S}} \newcommand{\calU}{\mathcal{U}} \newcommand{\calT}{\mathcal{T}} \newcommand{\gal}{\textrm{Gal}} \newcommand{\isom}{\approx} \renewcommand{\hom}{\textrm{Hom}}

Problem Set 13 Due 05/07/2018 (complete)

  1. Let K and L be fields. Show that the set \hom(K,L) of all homomorphisms from K to L, is linearly independent over L. In particular \aut(K) is linearly independent over K.
  2. Prove that a finite group G is solvable iff there is a finite sequence of subgroups 1=H_0\leq H_1 \leq \cdots \leq H_{n-1} \leq H_n=G such that each H_i\normaleq H_{i+1} and H_{i+1}/H_i is cyclic. Show, with a counterexample, that this equivalence does not hold in general for arbitrary groups.
  3. Define: an angle \theta is constructible if there are two constructible straight lines forming an angle \theta.
    Prove: let l be a constructible straight line, A a constructible point on l, and \theta a constructible angle. The straight line(s) that go through A and form an angle \theta with l is(are) constructible.

Problem Set 12 Due 04/27/2018 (complete)

  1. Let F/K be a field extension, S\subseteq T\subseteq F with S algebraically independent over K, and F algebraic over K(T). Prove that there is a transcendence basis B, for F over K, such that S\subseteq B\subseteq T. (Hint: prove that a directed union of algebraically independent sets over K is algebraically independent over K, and use Zorn's lemma)
  2. Let F/K be a field extension and S\subseteq F. Prove that TFAE:
    1. S is maximal algebraically independent over K,
    2. S is algebraically independent over K and F is algebraic over K(S),
    3. S is minimal such that F is algebraic over K(S).
  3. Let F/E/K be a field tower. Prove that tr.d._K(F)=tr.d._E(F)+tr.d._K(E)
  4. Let K be a field, and t_1,\dots,t_n independent variables. If f(t_1,\dots,t_n)\in K[t_1,\dots,t_n] is a symmetric polynomial in variables t_1,\dots,t_n, there is a polynomial g, such that f(t_1,\dots,t_n) = g(s_1,\dots,s_n). (Hint: Use double induction on n and d, the total degree of f)

Old Homework