$\newcommand{\aut}{\textrm{Aut}}
\newcommand{\end}{\textrm{End}}
\newcommand{\sub}{\textrm{Sub}}
\newcommand{\min}{\textrm{min}}
\newcommand{\lub}{\textrm{l.u.b.}}
\newcommand{\glb}{\textrm{g.l.b.}}
\newcommand{\join}{\vee}
\newcommand{\bigjoin}{\bigvee}
\newcommand{\meet}{\wedge}
\newcommand{\bigmeet}{\bigwedge}
\newcommand{\normaleq}{\unlhd}
\newcommand{\normal}{\lhd}
\newcommand{\union}{\cup}
\newcommand{\intersection}{\cap}
\newcommand{\bigunion}{\bigcup}
\newcommand{\bigintersection}{\bigcap}
\newcommand{\sq}[2][\ ]{\sqrt[#1]{#2\,}}
\newcommand{\pbr}[1]{\langle #1\rangle}
\newcommand{\ds}{\displaystyle}
\newcommand{\C}{\mathbb{C}}
\newcommand{\R}{\mathbb{R}}
\newcommand{\Q}{\mathbb{Q}}
\newcommand{\Z}{\mathbb{Z}}
\newcommand{\N}{\mathbb{N}}
\newcommand{\A}{\mathbb{A}}
\newcommand{\F}{\mathbb{F}}
\newcommand{\T}{\mathbb{T}}
\newcommand{\ol}[1]{\overline{#1}}
\newcommand{\ul}[1]{\underline{#1}}
\newcommand{\imp}{\Rightarrow}
\newcommand{\rimp}{\Leftarrow}
\newcommand{\pinfty}{1/p^\infty}
\newcommand{\power}{\mathcal{P}}
\newcommand{\calL}{\mathcal{L}}
\newcommand{\calC}{\mathcal{C}}
\newcommand{\calN}{\mathcal{N}}
\newcommand{\calB}{\mathcal{B}}
\newcommand{\calF}{\mathcal{F}}
\newcommand{\calR}{\mathcal{R}}
\newcommand{\calS}{\mathcal{S}}
\newcommand{\calU}{\mathcal{U}}
\newcommand{\calT}{\mathcal{T}}
\newcommand{\gal}{\textrm{Gal}}
\newcommand{\isom}{\approx}
\renewcommand{\hom}{\textrm{Hom}}
$
Prove that a directed union of algebraically independent sets over $K$ is algebraically independent over $K$. In particular, the union of a chain of algebraically independent sets over $K$ is algebraically independent over $K$.
Given $S\subseteq T$ with $S$ algebraically independent over $K$ and $F$ algebraic over $K(T)$, there is a transcendence basis $B$ with $S\subseteq B\subseteq T$. In particular, any field extension $F/K$ has a transcendence basis.
Prove the following version of the exchange property: Let $F/K$ be a field extension, $S,T\subseteq F$ be each algebraically independent over $K$, with $|S| < |T|$. There is $\beta\in T-S$ such that $S\union \{\beta\}$ is algebraically independent over $K$.
Prove that for a tower $L/F/K$, \[ tr.d._K(L) = tr.d._F(L) + tr.d._K(F) \]
Prove that if $f(t_1,\dots,t_n)$ is a symmetric polynomial in variables $t_1,\dots,t_n$, there exists a polynomial $g$ such that $f(t_1,\dots,t_n)=g(s_1,\dots,s_n)$.
Let $K\leq E\leq F$, and $\alpha\in F$, algebraic over $K$. Prove:
If $\alpha$ is separable over $K$, then it is separable over $E$.
If $\alpha$ is separable over $E$, and $E/K$ is separable, then $\alpha$ is separable over $K$.
Let $S$ be a set, and $P(x,B)$ denote a property, where $x \in S$ and $B ⊆ S$. When $P(x,B)$ is true, we will say that $x$ has the property $P$, with respect to $B$. For $A,B ⊆ S$, write $P(A,B)$ provided all elements of $A$ have property $P$ w.r.t. $B$, i.e. for all $x∈A$, we have $P(x,B)$. Let $$B^P := \{x\in S\ |\ P(x,B)\}$$ be the set of elements of $S$ related to $B$ via the property $P$. Assume the property $P$ satisfies:
All elements of $B$ satisfy property $P$ w.r.t. $B$, i.e. $x ∈ B ⇒ P(x,B)$,
if $x$ has property $P$ w.r.t. $B$, and $B ⊆ A$, then $x$ has property $P$ w.r.t. $A$, i.e. $(B ⊆ A \textrm{ and } P(x,B))⇒P(x,A)$,
if $x$ has property $P$ w.r.t. $A$, and $P(A,B)$, then $x$ has property $P$ w.r.t. $B$, i.e. $P(x,A) \textrm{ and } P(A,B) ⇒ P(x,B)$.
Show that the map $B \mapsto B^P$ is a closure operator.
Let $E/K$ be an algebraic extension, and let $E_i=E\intersection K^{\pinfty}$. Prove or disprove that $E/E_i$ is separable.
Each $\varphi\in\aut_K(\ol{K})$ induces a complete lattice automorphism of $\sub_K(\ol{K})$. All normal extensions of $K$ are fixed points of this automorphism.