Math 402 - 01 Previous Homework (Spring 2019)

\$\newcommand{\aut}{\textrm{Aut}} \newcommand{\inn}{\textrm{Inn}} \newcommand{\sub}{\textrm{Sub}} \newcommand{\cl}{\textrm{cl}} \newcommand{\join}{\vee} \newcommand{\bigjoin}{\bigvee} \newcommand{\meet}{\wedge} \newcommand{\bigmeet}{\bigwedge} \newcommand{\normaleg}{\unlhd} \newcommand{\normal}{\lhd} \newcommand{\union}{\cup} \newcommand{\intersection}{\cap} \newcommand{\bigunion}{\bigcup} \newcommand{\bigintersection}{\bigcap} \newcommand{\sq}[2][\]{\sqrt[#1]{#2\,}} \newcommand{\pbr}[1]{\langle #1\rangle} \newcommand{\ds}{\displaystyle} \newcommand{\power}{\mathcal{P}} \newcommand{\calL}{\mathcal{L}} \newcommand{\calC}{\mathcal{C}} \newcommand{\calR} {\mathcal{R}} \newcommand{\calB} {\mathcal{B}} \newcommand{\calF} {\mathcal{F}} \newcommand{\calR} \mathcal{R} \newcommand{\calS} \newcommand{\calU} {\mathcal{U}} \newcommand{\calT} \mathcal{T} \newcommand{\gal} \textrm{Gal} \newcommand{\isom} {\approx} \newcommand{\idl}{\textrm{Idl}} \newcommand{\lub}{\textrm{Iub}} \newcommand{\glb}{\textrm{glb}} \newcommand{\cis}{\textrm{cis}} \$

Problem Set 07 (complete) Due: 04/17/2019 Board presentation: 04/26/2019

- Let \$E\$ be a field, \$G\$ a finite subgroup of \$\aut(E)\$, \$F=E_G\$, and \$L\in\sub_F(E)\$. Show that \$L^*=\aut_L(E)\$, and it is a subgroup of \$G\$.
- Let \$E\$ be a field, \$G\$ a subgroup of \$\aut(E)\$, and \$F=E_G\$. Prove that for any \$H,H_1,H_2\in\sub(G)\$, and any \$L,L_1,L_2\in\sub_F(E)\$
 - I. If \$H_1 \leq H_2\$, then \$H_2^* \leq H_1^*\$. (i.e. \$\,^*\$ is order reversing)
 - II. If $L_1 \leq L_2$, then $L_2^* \leq L_1^*$. (i.e. $\lambda, *$ is order reversing)
 - III. $H \in H^{**}$ (i.e. $1 \leq \sqrt{**}$)
 - IV. \$L\leq L^{**}\$ (i.e. \$1 \leq \,^{**}\$)
- 3. Let E/L/F be a field tower.
 - I. Prove that if \$E/F\$ is a normal extension then so is \$E/L\$.
 - II. Prove that if E/F is a Galois extension then so is E/L.

Problem Set 06 (complete) Due: 04/12/2019 Board presentation: 04/17/2019

- Let \$F\$ be a field, \$\alpha_1,\dots,\alpha_n\$ elements from some extension \$E\$ of \$F\$, and \$R\$ a commutative ring with unity. If \$\varphi_1,\varphi_2:F(\alpha_1,\dots,\alpha_n)\to R\$ are homomorphisms such that \$\varphi_1(a)=\varphi_2(a)\$ for all \$a\in F\$ and \$\varphi_1(\alpha_i)=\varphi_2(\alpha_i)\$ for \$i=1,\dots,n\$, then \$\varphi_1=\varphi_2\$.
- 2. Let $f(x)=x^5-2\left(x\right)$, and \$E\$ the splitting field of f(x). Consider the group \$G=\aut_\Q(E)\$.
 - I. What is the order of \$G\$?
 - II. Is it abelian?
 - III. What are the orders of elements in \$G\$?
- 3. Let $F=F_p(t)$ be the field of rational functions on t with coefficients in F_p . Consider the polynomial $f(x)=x^p-t$ in F[x].

Last update: 2019/04/30 people:fer:402ws:spring2019:previous_homeworkhttp://www2.math.binghamton.edu/p/people/fer/402ws/spring2019/previous_homework 19:18

- I. Show that f(x) has no root in F.
- II. Show that the Frobeni \us endomorphism $\Phi F is not surjective.$
- III. Show that f(x) has exactly one root, and that root has multiplicity p.
- IV. Show that f(x) is irreducible over F.

Problem Set 05 (complete) Due: 03/25/2019 Board presentation: 04/02/2019

1. Let F be a field and f(x), $g(x) \in F[x]$. Prove:

I. (f(x)+g(x))' = f'(x) + g'(x)

II. f(x)g(x) = f(x)g'(x) + f'(x)g(x)

- 2. Let F be a field, and $\operatorname{F} F$ or F an endomorphism of F. Prove that the set $[F_\operatorname{a} F \operatorname{F} A]$ is a subfield of F.
- 3. How many monic irreducible polynomials of degree 4 are there over \$\F_5\$?
- 4. Let \$E\$ be a field extension of \$F\$. Prove that \$E\$ is an algebraic closure of \$F\$ iff \$E\$ is minimal with the property that every polynomial \$f(x)\in F[x]\$ splits over \$E\$.

Problem Set 04 (complete) Due: 03/11/2019 Board presentatiion: 03/25/2019

- 1. Let \$E/F\$ be a field extension. Prove that \$[E:F]=1\$ iff \$E=F\$.
- 2. Let \$E\$ and \$K\$ be field extensions of \$F\$ and \$\varphi:E\to K\$ an \$F\$-extension homomorphism. Show that \$\varphi\$ is a linear transformation of \$F\$-vector spaces.
- 3. Write $sq{2}$ as a polynomial expression on $a=\sqrt{2}+\sqrt{3}$.
- 4. Find the minimal polynomial of $u=(\sqrt{3}{2}+))$ over Q.

Problem Set 03 (complete) Due: 02/18/2019 Board presentation: 02/20/2019

- 1. Let \$V\$ be a vector space and \$B\subseteq V\$. Show that the following are equivalent
 - I. \$B\$ is a basis for \$V\$,
 - II. \$B\$ is maximal linearly independent set,
 - III. \$B\$ is minimal spanning set.
- 2. Let V be a vector space and W a subspace of V.
 - I. Prove that $\dim(W) \leq \dim(V)$.
 - II. Prove that if V is finite dimensional and $\dim(W) = \dim(V)$ then W = V
 - III. Show, with a counterexample, that the finite dimensional hypothesis is necessary in part b.
- 3. In regards to the *Universal Mapping Property* for vector spaces discussed in class today:
 - I. Complete the proof of it.
 - II. Prove that the set $\lambda = 0 \ N = 0 \ A = 0$
 - III. Prove that the set $\lambda = \frac{v}{\delta}$ is a spanning set for W iff $\dot{\delta}$ is surjective.
- 4. Let \$V\$ be a vector space over \$F\$, and \$W\$ a subspace of \$V\$. Let \$B_1\$ be a basis for \$W\$ and \$B\$ a basis for \$V\$ such that \$B_1\subseteq B\$. Prove that the set \[\{v+W\mid v\in B-B_1\} \] is a basis for the quotient space \$V/W\$.

Problem Set 02 (complete) Due: 02/11/2019 Board presentation: 02/18/2019

Let \$D\$ be a UFD. \$a,b,c\in D\$, and \$f(x)\in D[x]\$. \$a,b\$ are said to be "relatively prime" if \$\gcd(a,b)\$ is a unit.
 I. Prove that if \$a,b\$ are relatively prime and \$a|bc\$ then \$a|c\$.

×

II. Prove that if f(x) is a root of f(x), and a,b are relatively prime, then a divides the constant term of f(x) and b divides the leading term of f(x).

3/3

- 2. Let \$D\$ be an ED, \$a,b\in D\$, with \$b\neq 0\$. Consider the sequence \$r_0,r_1,r_2,\dots,r_n\$ defined recursively as follows: \$r_0=a,r_1=b\$, and using the propery of an Euclidean Domain, until obtaining a residue \$0\$, \[\begin{array}{rclll} r_0 &=&q_1 r_1 + r_2 &\text{ and} &\delta(r_2) < \delta(r_1), \\ r_1 &=&q_2 r_2 + r_3 &\text{ and} &\delta(r_3) < \delta(r_2), \\ &\vdots \\ r_{n-3} &=&q_{n-2} r_{n-2} + r_{n-1} &\text{ and} &\delta(r_1), \\ r_1 &=&q_2 r_2 + r_3 &(text{ and} & \delta(r_1), \\ r_1 &=&q_2 r_2 + r_3 &(text{ and} & (r_{n-1})) < \delta(r_n-2), \\ &\vdots \\ r_n-2} &=&q_{n-1} r_{n-1} + r_n &(text{ and} & r_n=0. \\ end{array})] Why does the sequence \$r_1,r_2,\dots,r_n\$ have to eventually attain the value \$r_n=0\$? Prove that the last non-zero entry in the residues list, i.e. \$r_{n-1}\sim\gcd(a,b)\$.</p>
- 3. Let D be a PID, $a,b\in D$. Let d be a generator of the ideal $\phi_{a}+\rho_{b}$. Show that $d \leq a,b$.
- 4. Let \$D\$ be an ID, \$a,b\in D\$. Prove that if \$a\$ and \$b\$ have a least common multiple \$l\in D\$, then \$\frac{ab}{1}\$ is a greatest common divisor of \$a\$ and \$b\$ in \$D\$.
- 5. (Optional) Let \$\gamma=\ds\frac{1+\sqrt{-19}}{2}\$ and consider the subring of \$\C\$ given by: \[R = \{a + b\gamma\mid a,b\in\Z\} \] Prove that \$R\$ is a PID but not an ED. A detailed proof can be found in Mathematics Magazine, Vol. 46, No. 1 (1973), pp 34-38. If you choose to work on this problem, do not consult this reference, or any other reference. Hand-in only your own work, even it it is only parts of the solution.

Problem Set 01 (complete) Due: 02/01/2019 Board presentation: 02/08/2019

- 1. Let $D\$ be an integral domain. Consider the following two properties that $D\$ and a function $\$ $delta: D_{0}\$ may have:
 - I. For any \$a,d\in D\$ with \$d\neq 0\$, there are \$q,r\in D\$ such that a=qd+r and (r=0 or delta(r) < delta(d))
 - II. For any \$a,b\in D-\{0\}\$, \$\delta(a)\leq\delta(ab)\$.
 Prove that if there is a function \$\delta\$ satisfying the first condition, then there is a function \$\gamma\$ satisfying both of them. Hint: consider \$\gamma\$ defined by: \[\gamma(a):= \min_{x\in D-\{0\}}\delta(ax)\]
- 2. Chapter 18, problem 22.
- 3. Chapter 16, problem 24. Can you weaken the assumption "infinitely many"?
- 4. Show that an integral domain \$D\$ satisfies the ascending chain condition ACC iff every ideal of \$D\$ is finitely generated. (Hint: one direction is similar to the proof that every PID satisfies the ACC).

<u>Home</u>

From:

http://www2.math.binghamton.edu/ - Department of Mathematics and Statistics, Binghamton University

Permanent link: http://www2.math.binghamton.edu/p/people/fer/402ws/spring2019/previous_homework

Last update: 2019/04/30 19:18