~~META:title=Previous Homework~~
===== Math 330 - 01 Homework (Spring 2022)=====
{{page>people:fer:330ws:330ws_homework_header&nofooter&noeditbtn}}
----
{{page>people:fer:330ws:defs&nofooter&noeditbtn}}
=== Previous Homework ===
**Problem Set 09** (complete) Due: 04/04/2022. Board presentation: 04/08/2022
-Prove Prop. 8.40.ii
-Prove Prop. 8.50
-Give examples of subsets of $\R$ which are:
-bounded below and above,
-bounded below, but not bounded above,
-bounded above, but not bounded below,
-not bounded above or below.
-Project 9.3
**Problem Set 08** (complete) Due: 03/28/2022. Board presentation: 04/01/2022
-Prove Prop. 6.17
-Prove Prop. 6.25 (first part)
-Use Euclid's Lemma to prove the following corollary. Let $p$ be a prime, $k\in\N$, $m_1,m_2,\dots,m_k\in\N$. If $p|(m_1m_2\cdots m_k)$ then there is some $i$ with $1\leq i \leq k$ such that $p|m_i$. (Hint: Use induction on $k$).
-Prove Prop. 6.28
**Problem Set 07** (complete) Due: 03/21/2022. Board presentation: 03/25-28/2022
- Prove that set union is associative.
- Prove Prop. 5.20.ii
- Let $X$ and $Y$ be sets. Let $\power(X)$ denote the power set of $X$. Prove that: \[X\subseteq Y \iff \power(X)\subseteq\power(Y).\]
- Let $A$ be a set, and $\sim$ an equivalence relation on $A$. Let $(A/{\sim})$ be the partition consisting of all equivalence classes of $\sim$. Let $\Theta_{(A/{\sim})}$ be the equivalence relation induced by the partition $(A/{\sim})$. Prove that the two equivalence relations $\Theta_{(A/{\sim})}$ and $\sim$ are equal.
**Problem Set 06** (complete) Due: 03/07/2022. Board presentation: 03/11/2022
- Prove that $$\sum_{k=2}^n \binom{k}{2} = \binom{n+1}{3}$$ Hint: use induction on $n$.
- Prove that for $k\geq 1$, $$\sum_{m=0}^k (-1)^m \binom{k}{m} = 0$$
- Determine the base case, and prove by induction and using the recursive definition of Fibonacci numbers that $$f_{2k}=f_{k+1}^2-f_{k-1}^2$$
- Prove Prop. 4.31 without using Prop. 4.29
**Problem Set 05** (complete) Due: 02/28/2022. Board presentation: 03/04/2022
- Prove Prop. 4.6.iii
- Prove Prop. 4.11.ii
- Prove Prop. 4.15.i
- Prove Prop. 4.18
**Problem Set 04** (complete) Due: 02/21/2022. Board presentation: 02/28/2022
- Prove Prop. 2.38 ({{people:fer:330ws:appendix_ch2.pdf|appendix}})
- Prove Prop. 2.41.iii ({{people:fer:330ws:appendix_ch2.pdf|appendix}})
- Project 3.1
**Problem Set 03** (complete) Due: 02/14/2022. Board presentation: 02/18/2022
- Prove that for all $k\in\N$, $k^2+k$ is divisible by 2. Is this true for all $k\in\Z$?
- Prove Prop. 2.18.iii
- Prove Prop. 2.21. Hint: use proof by contradiction.
- Prove Prop. 2.23. Show, by counterexample, that the statement is not true if the hypothesis $m,n\in\N$ is removed.
- Fill-in the blank and prove that for all $k\geq\underline{\ \ }$, $k^2 < 2^k$.
**Problem Set 02** (complete) Due:02/07/2022. Board presentation: 02/11/2022
- Prove Prop. 1.24
- Prove Prop. 1.27.ii,iv
- Prove Prop. 2.7.i,ii
- Prove Prop. 2.12.iii
**Problem Set 01** (complete) Due: 01/31/2022. Board presentation: 02/04/2022 (rescheduled for 02/07/2022)
- Prove Prop. 1.7
- Prove Prop. 1.11.iv
- Prove Prop. 1.14
- Prove that 1 + 1 ≠ 1. (Hint: assume otherwise, and get a contradiction).\\ Can you prove that 1 + 1 ≠ 0?
[[people:fer:330ws:spring2022:home| Home]]