Math 330 - 03 Homework (Fall 2018)
\newcommand{\aut}{\textrm{Aut}}
\newcommand{\sub}{\textrm{Sub}}
\newcommand{\join}{\vee}
\newcommand{\bigjoin}{\bigvee}
\newcommand{\meet}{\wedge}
\newcommand{\bigmeet}{\bigwedge}
\newcommand{\normaleq}{\unlhd}
\newcommand{\normal}{\lhd}
\newcommand{\union}{\cup}
\newcommand{\intersection}{\cap}
\newcommand{\bigunion}{\bigcup}
\newcommand{\bigintersection}{\bigcap}
\newcommand{\sq}[2][\ ]{\sqrt[#1]{#2\,}}
\newcommand{\pbr}[1]{\langle #1\rangle}
\newcommand{\ds}{\displaystyle}
\newcommand{\C}{\mathbb{C}}
\newcommand{\R}{\mathbb{R}}
\newcommand{\Q}{\mathbb{Q}}
\newcommand{\Z}{\mathbb{Z}}
\newcommand{\N}{\mathbb{N}}
\newcommand{\A}{\mathbb{A}}
\newcommand{\F}{\mathbb{F}}
\newcommand{\T}{\mathbb{T}}
\newcommand{\ol}[1]{\overline{#1}}
\newcommand{\imp}{\Rightarrow}
\newcommand{\rimp}{\Leftarrow}
\newcommand{\pinfty}{1/p^\infty}
\newcommand{\power}{\mathcal{P}}
\newcommand{\calL}{\mathcal{L}}
\newcommand{\calC}{\mathcal{C}}
\newcommand{\calN}{\mathcal{N}}
\newcommand{\calB}{\mathcal{B}}
\newcommand{\calF}{\mathcal{F}}
\newcommand{\calR}{\mathcal{R}}
\newcommand{\calS}{\mathcal{S}}
\newcommand{\calU}{\mathcal{U}}
\newcommand{\calT}{\mathcal{T}}
\newcommand{\gal}{\textrm{Gal}}
\newcommand{\isom}{\approx}
\newcommand{\glb}{\textrm{glb}}
Problem Set 11 (complete) Due: 11/12/2018. Board presentation: 11/16/2018
Prove the following corollary to Prop. 10.4
Corollary: \glb(\R^+)=0.
Prove Prop. 10.7
Prove Prop. 10.10.iii
Prove Prop. 10.13.ii
Problem Set 10 (complete) Due: 11/05/2018. Board presentation: 11/14/2018
Let f:A\to B and g:B\to C be functions.
If g\circ f is injective, then f is injective.
If g\circ f is surjective, then g is surjective.
Construct examples of functions f:A\to B and g:B\to C such that:
g\circ f is injective, but g is not injective.
g\circ f is surjective, but f is not surjective.
Prove Prop. 9.15 (Hint: induction)
Prove Prop. 9.18
Problem Set 09 (complete) Due: 10/29/2018. Board presentation: 11/05/2018
Prove Prop. 8.40.ii
Prove Prop. 8.41
Prove Prop. 8.50
Give examples of subsets of \R which are:
bounded below and above,
bounded below, but not bounded above,
bounded above, but not bounded below,
not bounded above or below.
Problem Set 08 (complete) Due: 10/22/2018. Board presentation: 10/31/2018
Prove Prop. 6.16
Prove Prop. 6.17
Prove Prop. 6.25 (first part)
Use Euclid's Lemma to prove the following corollary. Let p be a prime, k\in\N, m_1,m_2,\dots,m_k\in\N. If p|(m_1m_2\cdots m_k) then there is some i with 1\leq i \leq k such that p|m_i. (Hint: Use induction on k).
Problem Set 07 (complete) Due: 10/15/2018. Board presentation: 10/31/2018
Let A be a set, and \sim an equivalence relation on A. Let A/\sim be the partition consisting of all equivalence classes of \sim. Let \Theta_{(A/\sim)} be the equivalence relation induced by the partition A/\sim. Prove that \Theta_{(A/\sim)}=\ \sim.
Do Project 6.8.iv.
Problem Set 06 (complete) Due: 10/08/2018. Board presentation: 10/31/2018
Prove that set union is associative.
Show, by counterexample, that set difference is not associative.
Prove Prop. 5.20.ii
Let X and Y be sets. Let \power(X) denote the power set of X. Prove that: X\subseteq Y \iff \power(X)\subseteq\power(Y).
(challenge) Prove that symmetric difference is associative.
Problem Set 05 (complete) Due: 10/01/2018. Board presentation: 10/05/2018
Prove Prop. 4.6.iii
Prove Prop. 4.11.ii
Prove Prop. 4.15.i
Prove Prop. 4.16.ii
Problem Set 04 (complete) Due: 09/17/2018. Board presentation: 09/21/2018
-
-
Problem Set 03 (complete) Due: 09/12/2018. Board presentation: 09/17/2018
Prove that for all k\in\N, k^2+k is divisible by 2.
Prove Prop. 2.18.iii
Prove Prop. 2.21. Hint: use proof by contradiction.
Prove Prop. 2.23. Show, by counterexample, that the statement is not true if the hypothesis m,n\in\N is removed.
Fill-in the blank and prove that for all k\geq\underline{\ \ }, k^2 < 2^k.
Problem Set 02 (complete) Due:09/05/2018. Board presentation: 09/10/2018
Prove Prop. 1.24
Prove Prop. 1.27.ii,iv
Prove Prop. 2.7.i,ii
Prove Prop. 2.12.iii
Problem Set 01 (complete) Due: 08/27/2018. Board presentation: 08/31/2018
Prove Prop. 1.7
Prove Prop. 1.11.iv
Prove Prop. 1.14
Prove that 1 + 1 ≠ 1. (Hint: assume otherwise, and get a contradiction).
Can you prove that 1 + 1 ≠ 0?
Home