Processing math: 0%

Math 330 - 03 Homework (Fall 2018)


\newcommand{\aut}{\textrm{Aut}} \newcommand{\sub}{\textrm{Sub}} \newcommand{\join}{\vee} \newcommand{\bigjoin}{\bigvee} \newcommand{\meet}{\wedge} \newcommand{\bigmeet}{\bigwedge} \newcommand{\normaleq}{\unlhd} \newcommand{\normal}{\lhd} \newcommand{\union}{\cup} \newcommand{\intersection}{\cap} \newcommand{\bigunion}{\bigcup} \newcommand{\bigintersection}{\bigcap} \newcommand{\sq}[2][\ ]{\sqrt[#1]{#2\,}} \newcommand{\pbr}[1]{\langle #1\rangle} \newcommand{\ds}{\displaystyle} \newcommand{\C}{\mathbb{C}} \newcommand{\R}{\mathbb{R}} \newcommand{\Q}{\mathbb{Q}} \newcommand{\Z}{\mathbb{Z}} \newcommand{\N}{\mathbb{N}} \newcommand{\A}{\mathbb{A}} \newcommand{\F}{\mathbb{F}} \newcommand{\T}{\mathbb{T}} \newcommand{\ol}[1]{\overline{#1}} \newcommand{\imp}{\Rightarrow} \newcommand{\rimp}{\Leftarrow} \newcommand{\pinfty}{1/p^\infty} \newcommand{\power}{\mathcal{P}} \newcommand{\calL}{\mathcal{L}} \newcommand{\calC}{\mathcal{C}} \newcommand{\calN}{\mathcal{N}} \newcommand{\calB}{\mathcal{B}} \newcommand{\calF}{\mathcal{F}} \newcommand{\calR}{\mathcal{R}} \newcommand{\calS}{\mathcal{S}} \newcommand{\calU}{\mathcal{U}} \newcommand{\calT}{\mathcal{T}} \newcommand{\gal}{\textrm{Gal}} \newcommand{\isom}{\approx} \newcommand{\glb}{\textrm{glb}}

Problem Set 14 (complete) Due: 12/10/2018, optional (put inside bag on my office door)

  1. Prove that if A and B are finite sets, then A\union B is a finite set.
  2. Prove that if A and B are countable sets, then A\union B is a countable set. (Hint: use Prop. 13.9)
  3. Prove The. 13.28 (Hint: consider the function f(x)=\tan(x) from calculus)

Problem Set 13 (complete) Due: 12/03/2018. Board presentation: 12/??/2018

  1. Prove the converse of Prop 11.2
  2. Prove that for all x,y,z,w\in\R with z\neq 0\neq w, \frac{x}{z}+\frac{y}{w}=\frac{xw+yz}{zw}\qquad\textrm{and}\qquad\frac{x}{z}\frac{y}{w}=\frac{xy}{zw}
  3. Consider the set A=\{x\in\Q\mid x^2<2\} Show that A is non-empty and has an upper bound in \Q, but does not have a least upper bound in \Q. Hint: by way of contradiction, assume A has a least upper bound u in \Q, and compare it with \sqrt{2}.
  4. Consider the sequence defined recursively by a_n=a_{n-1}+3a_{n-2} \\ a_1=1 \\ a_2=2. Use the converse of Proposition 11.25 to find a closed formula for a_n.

Problem Set 12 (complete) Due: 11/19/2018. Board presentation: 11/??/2018

  1. Prove Prop. 10.17
  2. Prove Prop. 10.23.iii

Previous Homework

Home