Math 330 - 02 Previous Homework
$\newcommand{\aut}{\textrm{Aut}}
\newcommand{\sub}{\textrm{Sub}}
\newcommand{\join}{\vee}
\newcommand{\bigjoin}{\bigvee}
\newcommand{\meet}{\wedge}
\newcommand{\bigmeet}{\bigwedge}
\newcommand{\normaleq}{\unlhd}
\newcommand{\normal}{\lhd}
\newcommand{\union}{\cup}
\newcommand{\intersection}{\cap}
\newcommand{\bigunion}{\bigcup}
\newcommand{\bigintersection}{\bigcap}
\newcommand{\sq}[2][\ ]{\sqrt[#1]{#2\,}}
\newcommand{\pbr}[1]{\langle #1\rangle}
\newcommand{\ds}{\displaystyle}
\newcommand{\C}{\mathbb{C}}
\newcommand{\R}{\mathbb{R}}
\newcommand{\Q}{\mathbb{Q}}
\newcommand{\Z}{\mathbb{Z}}
\newcommand{\N}{\mathbb{N}}
\newcommand{\A}{\mathbb{A}}
\newcommand{\F}{\mathbb{F}}
\newcommand{\T}{\mathbb{T}}
\newcommand{\ol}[1]{\overline{#1}}
\newcommand{\imp}{\Rightarrow}
\newcommand{\rimp}{\Leftarrow}
\newcommand{\pinfty}{1/p^\infty}
\newcommand{\power}{\mathcal{P}}
\newcommand{\calL}{\mathcal{L}}
\newcommand{\calC}{\mathcal{C}}
\newcommand{\calN}{\mathcal{N}}
\newcommand{\calB}{\mathcal{B}}
\newcommand{\calF}{\mathcal{F}}
\newcommand{\calR}{\mathcal{R}}
\newcommand{\calS}{\mathcal{S}}
\newcommand{\calU}{\mathcal{U}}
\newcommand{\calT}{\mathcal{T}}
\newcommand{\gal}{\textrm{Gal}}
\newcommand{\isom}{\approx}
\newcommand{\glb}{\textrm{glb}}
$
Problem Set 10 (complete) Due: 11/17/2017. Board Presentation: 11/17/2017
Prove Prop. 10.23.v
Prove The. 10.26
Let $(a_n)$ be a sequence. Consider the sequence of even-indexed terms, $(a_{2n})$, and the sequence of odd-indexed terms, $(a_{2n+1})$. Prove that if both $(a_{2n})$ and $(a_{2n+1})$ converge to $L$, then $(a_n)$ converges to $L$.
Let $q_n=\displaystyle\frac{f_n}{f_{n+1}}$, where $f_n$ is the $n$-th Fibonacci number. Show that the sequence $(q_n)$ converges. What value does it converge to?
Problem Set 9 (complete) Due: 11/10/2017. Board presentation: 11/10/2017
Prove Prop. 10.10.iii
Prove Prop. 10.17
Prove Prop. 10.23.iii
Problem Set 8 (complete) Due: 11/03/2017. Board presentation: 11/03/2017
Prove Prop. 8.50
Prove that function composition is associative, when defined.
Let $A,B,C$ be sets and $f:A\to B$ and $g:B\to C$ functions. Prove that if $g\circ f$ is surjective then $g$ is surjective. Give an example when $g\circ f$ is surjective, but $f$ is not.
Construct an example of a function with several right inverses.
Prove Prop. 9.15 (Hint: induction on $k$)
Prove Prop. 9.18
Problem Set 7 (complete) Due: 10/27/2017. Board presentation: 10/27/2017
Prove the corollary to Prop. 6.25: Let $a,b\in\Z$, $n\in\N$ and $k\geq 0$. If $a \equiv b \pmod{n}$ then $a^k \equiv b^k \pmod{n}$. (Hint: induction on $k$)
Prove Prop. 8.6
Prove Prop. 8.40.ii
Prove Prop. 8.41
Problem Set 6 (complete) Due: 10/13/2017. Board presentation: 10/20/2017
Let $f_n$ be the $n$-th Fibonacci number. Prove by induction on $n$ that \[ \sum_{j=1}^n f_{2j} = f_{2n+1}-1 \]
Find and write down all the partitions on a 4-element set $A=\{a,b,c,d\}$. How many equivalence relations are there on $A$?
Prove Prop. 6.15
Prove Prop. 6.16
Problem Set 5 (complete) Due: 10/06/2017. Board presentation: 10/18/2017
Let $n\in\N$. Prove that if $n$ is divisible by 3, then $f_n$ is even. Is the converse true? If so, prove it; if not, give a counterexample.
Let $n\in\N$. Prove that if $n$ is divisible by 5, then $f_n$ is divisible by 5. Is the converse true? If so, prove it; if not, give a counterexample.
Prove the following identities for the Fibonacci numbers \[ f_{2n+1}=f_n^2+f_{n+1}^2;\quad \\ f_{2n}=f_{n+1}^2-f_{n-1}^2 = f_n(f_{n+1}+f_{n-1}) \]
Prove the associativity of the set union and set intersection operations. Give a counterexample to show that set difference is not associative.
Problem Set 4 (complete) Due: 09/29/2017. Board presentation: 10/06/2017
Prove Prop. 4.6.iii
Prove Prop. 4.11.ii
Do project 4.12
Prove Prop. 4.16.ii
Problem Set 3 (complete) Due: 09/15/2017. Board presentation: 09/20/2017
Prove Prop. 2.21 (Hint: proof by contradiction)
Prove Prop. 2.23. Show, by counterexample, that the statement is not true when the hypothesis $m,n\in\N$ is removed.
-
-
Problem Set 2 (complete) Due: 09/08/2017. Board presentation: 09/15/2017
Prove Prop. 1.25
Prove Prop. 1.27.iv
Prove Prop. 2.7
Prove transitivity of $"\leq"$.
Problem Set 1 (complete) Due: 09/01/2017. Board Presentation: 09/08/2017
Prove Prop. 1.7
Prove that 1 + 1 ≠ 1. (Hint: assume otherwise, and get a contradiction). Can you prove that 1 + 1 ≠ 0?
Prove Prop. 1.11.iv
Prove Prop. 1.14
Current Homework
Home