Problem 5. Prove that for a € (0,7/2) we have

tan(a) — tan (%) + tan (%) — tan (%) +...>tan <2;) .

Solution. First note that by the alternating series test the left hand side is indeed a convergent series

(it is actually absolutely convergent). We are asked to show that

tan(a) —tan (20 = tan () = 1an (5) # ton (5) = = 3 (1an (i) — o0 ().

By the mean value theorem, we have

tan(a) — tan 2o _ a—2—a L __ o
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for some ¢ € (o, 2a/3). By the same theorem, we have
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for some ¢, € (a/2%71 a/2?%). Note that 7/2 > ¢ > ¢1 > ¢o > ... > 0. Thus 1/cos?(¢) >
1/ cos?(¢1) > 1/ cos?(¢p2) > ... and therefore

> « « > « > « « 2c
z (tan (W) ~ tan (ﬁ)) B Z 22k cos? ¢y, < Z 2k cos2d  3coslp tan(a) — tan (3)

k=1 k=1 k=1

( we used the equality > po; 1/2%% =1/3).

Second solution (after Gerald Marchesi). Let ¢g = 1 and
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for k > 0. Clearly (c;) is a decreasing sequence converging to 2/3. In particular, cxy1 = ¢ — 1/4FF1
and ¢, > 2/3 > 1/2%+1 for every k.

Note that for any ¢ € (0,7/2) the function f(x) = tanz — tan(x — ¢) is increasing on (¢, 7/2). This
follows from the fact that f/(z) = sec?(z) — sec?(x — ¢) is positive on (¢, 7/2). Taking ¢ = o /41 we
get flepa) > f(a/22KHh), e

«a o
tan(cpa) — tan(cpy1) > tan (W) — tan (W) .
Note now that for any positive integer n we have
n n

tan o = tan(cpy10) + Z (tan(cpa) — tan(cg41)) > tan (230[> + Z (tan (ﬁ%) — tan (ﬁ%)) .

k=0 k=0
Letting n go to infinity, we get
2a = @ @
tan(a) — tan <3> > Z (tan (W) — tan (W))
k=0

as required.

Third solution (after Matt Wolak). Consider the function f(z) = tan(z) — zsec?(2a/3). It is a
simple exercise to show that f has the following properties:

1. f is odd.



2. f is decreasing on [—2a/3,2a/3] and increasing on [2a/3,7/2).
3. f(z) > f(0) =0 for x € [—2/3,0).
4. f(z) > f(2a/3) for x € [-2a/3,7/2).

For any positive integer n we have

kzjof (a (-;)k> —f<a>+ki_o<f (;}g) » (2—}5«_»

We have f(a) > f(2a/3) by property 4 and each term in the sum on the right is positive by property

2. It follows that
2ol 1\* 20
2 f(“(z) ) - (%)
k=0

for every positive integer n. On the other hand,
2n+1 1 k 2n+1 a 20 2n+1 a
_ k 2 k
Z f (a (—2> > = Z (—=1)" tan (2—k> — sec (3) Z (-1) ok
k=0 k=0 k=0
Letting n go to infinity and using the fact that Y2 (—=1)*a /2% = 2a/3, we get
- k o 5 (2 2c 2a0\ 2a 5 [ 2a) 2«
];(—1) tan (27) — sec (3) 5 > f (3 =tan | o ) —sec” | o | =

ie.

Fourth solution. We will use Karamata’s inequality (see page 4 of the solution to problem 6 from
Spring 2025). Let n > 2 be a positive integer. Let x, = /2272 for k = 1,...,n. Let yp = /2273
fork=2...nandlet y3 = (&1 +...4+xn) — (Y2 + ... +Yn). Then a1 > ... > xp, y1 > ... > Y,
ri+...+xpn =1 +...+yp,and z1+...+xx > y1 +...+yr for k =1,...,n. Since tanx is convex
on (0,7/2), Karamata’s inequality says that

tanz; + ... +tanz, > tany; + ... + tany,.

In other words,
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Z (—1)* tan (27) > tany; = tan ( (—1)’“2k> .

k=0 0
Letting n go to infinity, we get

x>~
Il

2(—1)’“ tan (%) > tan (2;‘) .

Problem. Let f be a convex function on [0, a] and let n be a positive integer. Let a > a3 > ag > ... >
a2n-1 = 0.

a) Use Karamata’s inequality to prove that



