
Problem 2. Find all functions F : R2 −→ R such that
(i) If ABCD is any rectangle on the plane R2 then F (A) + F (C) = F (B) + F (D);

(ii) The second order partial derivatives
∂2F

∂x∂x
,
∂2F

∂x∂y
,
∂2F

∂y∂x
,
∂2F

∂y∂y
exist and are continuous on R2

(this means that F is of class C2);

(iii) F (0, 0) = 0, F (1, 0) = 1 = F (0, 1),
∂F

∂x
(0, 0) = 0.

Solution. Suppose that a function F : R2 −→ R satisfies the following condition

(∗) F (A) + F (C) = F (B) + F (D) for any rectangle ABCD on the plane R2 whose sides are parallel
to the x− and y− axes.

This means that for any real numbers x, y, s, t we have

F (x, y) + F (x+ s, y + t) = F (x, y + t) + F (x+ s, y).

In particular, F (s, t)+F (0, 0) = F (s, 0)+F (0, t) for any real numbers s, t. Let g(x) = F (x, 0)−F (0, 0)/2,
h(x) = F (0, x)− F (0, 0)/2. Then

F (x, y) = g(x) + h(y) and g(0) = h(0). (1)

Conversely, any function F of the form (1) satisfies the condition (∗).

Suppose now that in addition to condition (1) the function F satisfies F (0, 0) = 0. Then g(0)+h(0) = 0
and g(0) = h(0), i.e. g(0) = h(0) = 0.

Let Rα denote the counter-clock rotation of the plane about the origin (0, 0) by angle α. In other words,

Rα(x, y) = (x cosα− y sinα, x sinα+ y cosα).

The function F satisfies condition (i) of the problem if and only if for every α the function Fα = F ◦Rα
has property (∗). Note that

Fα(x, y) = g(x cosα− y sinα) + h(x sinα+ y cosα).

As we noticed earlier, Fα has property (∗) if and only if Fα(x, y) = gα(x) + hα(y), where gα(x) =
Fα(x, 0) − Fα(0, 0)/2 = g(x cosα) + h(x sinα) and hα(x) = Fα(0, x) − Fα(0, 0)/2 = g(−x sinα) +
h(x cosα). Thus Fα has property (∗) if and only if

g(x cosα− y sinα) + h(x sinα+ y cosα) = g(x cosα) + h(x sinα) + g(−y sinα) + h(y cosα) (2)

for every real numbers x, y.

Suppose now that the partial derivatives
∂F

∂x
,
∂F

∂y
exist on R2. This is equivalent to the assumption

that the functions g and h are differentiable.

There are now several ways to complete the solution.

First method (after Matt Wolak). Differentiating (2) with respect to α we get

g′(x cosα− y sinα)(−x sinα− y cosα) + h′(x sinα+ y cosα)(x cosα− y sinα) =

−g′(x cosα)x sinα+ h′(x sinα)x cosα− g′(−y sinα)y cosα+ h′(y cosα)y sinα

In particular, setting α = 0 we get

−yg′(x) + xh′(y) = xh′(0)− yg′(0).

Taking x = 1 we have
h′(y) = (g′(1)− g′(0))y + h′(0)
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and taking y = 1 yields
g′(x) = (h′(1)− h′(0))x+ g′(0).

Taking x = 1 in the last equality we see that g′(1)− g′(0) = h′(1)− h′(0) = a. Thus derivatives of both
g and h are linear functions, so g and h must be quadratic polynomials:

g(x) = ax2 + px+ q and h(x) = ax2 + sx+ t

for some numbers p, q, s, t. Since g(0) = 0 = h(0), we have q = t = 0. So far we have only used the
equality F (0, 0) = 0 from (iii). Since F (1, 0) = g(1) = 1 and F (0, 1) = h(1) = 1 we get a+p = 1 = a+s.

Finally, since
∂F

∂x
(0, 0) = g′(0) = 0, we get p = 0. Putting these together, we have a = 1, p = 0 = s

and F (x, y) = x2 + y2. It is easy to check that x2 + y2 indeed satisfies all the conditions of the
problem. Indeed, conditions (ii) and (iii) are clear and for (i) it suffices to check that (2) holds when
g(x) = x2 = h(x), which is a simple exercise.

Remark. Note that in this solution we only need existence of the partial derivatives
∂F

∂x
and

∂F

∂y
.

Second method. In this solution we only need the equality (2) for α = π/4:

g

(√
2

2
x−
√

2

2
y

)
+ h

(√
2

2
x+

√
2

2
y

)
= g

(√
2

2
x

)
+ h

(√
2

2
x

)
+ g

(
−
√

2

2
y

)
+ h

(√
2

2
y

)
.

Since it holds for all x, y, it is equivalent to

g(x− y) + h(x+ y) = g(x) + h(x) + g(−y) + h(y).

Taking derivative with respect to x we get

g′(x− y) + h′(x+ y) = g′(x) + h′(x).

Now the assumption (ii) (just the existence of the second order partial derivatives) implies that g and
h are twice differentiable, so we can take derivative with respect to y of the last equation to get

−g′′(x− y) + h′′(x+ y) = 0.

Setting x = y we see that h′′ is a constant function, and therefore g′′ is also constant: g′′(x) = a = h′′(x).
It follows that g and h are quadratic polynomials with the same leading coefficient. Now we proceed as
in the last steps of the first method.

Remark. Note that in this solution we need existence of the second order partial derivatives, but we
do not need their continuity and we only use the assumption that F0 and Fπ/4 have property (∗).

Third method. This method only needs (iii), the existence of the partial derivatives
∂F

∂x
and

∂F

∂y
, and

the assumption that F0 and Fα have property (∗) for a single α ∈ (0, π/2).

Differentiating (2) with respect to y we get

−g′(x cosα− y sinα) sinα+ h′(x sinα+ y cosα) cosα = −g′(y sinα) sinα+ h′(y cosα) cosα. (3)

Taking y = 0 in (3) we get

−g′(x cosα) sinα+ h′(x sinα) cosα = −g′(0) sinα+ h′(0) cosα = A

Setting y = x sinα we can rewrite the last equation as

h′(y) = tanαg′(y cotα) +B, (4)

where B = A/ cosα is a constant. This allows us to write (3) as follows:

−g′(x cosα− y sinα) sinα+ (tanαg′((x sinα+ y cosα) cotα) +B) cosα =
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−g′(y sinα) sinα+ (tanαg′(y cosα cotα) +B) cosα.

i.e.
−g′(x cosα− y sinα) + g′(x cosα+ y cosα cotα) = −g′(y sinα) + g′(y cosα cotα). (5)

Since (5) holds for any x, y, we can plug x+ z/ cosα for x to get

−g′(x cosα− y sinα+ z) + g′(x cosα+ y cosα cotα+ z) = −g′(y sinα) + g′(y cosα cotα). (6)

From (5) and (6) we get

−g′(x cosα−y sinα+z)+g′(x cosα+y cosα cotα+z) = −g′(x cosα−y sinα)+g′(x cosα+y cosα cotα)

i.e.

g′(x cosα−y sinα+z)−g′(x cosα−y sinα) = g′(x cosα+y cosα cotα+z)−g′(x cosα+y cosα cotα). (7)

Note now that given any real numbers u,w we can find x, y such that

u = x cosα− y sinα and w = x cosα+ y cosα cotα

so
g′(u+ z)− g′(u) = g′(w + z)− g′(w)

holds for all real numbers u,w, z. Taking w = 0 and using the fact that g′(0) = 0 we see that g′(u+z) =
g′(u) + g′(z) for any real numbers u, z. In other words g′ is an additive function. We will use now the
result that any integrable additive function is linear, i.e. g′(x) = ax for some constant a. Note that (4)
implies that h′(y) = ay +B is also linear. Now we complete the solution as in method 1.

Remark. For more information about additive functions see the remark at the end of the solution to
Problem 3 from the Fall 2022 problem of the week.

4th method. In this solution we only assume that F is continuous, F (0, 0) = 0, F (1, 0) = F (−1, 0) = 1,
F (0, 1) = F (0,−1), and both F0 and Fπ/4 have property (∗). In other words, F (x, y) = g(x) + h(y),
where g, h are continuous functions such that g(0) = h(0) = 0, g(1) = g(−1) = 1, h(1) = h(−1) and

g(x− y) + h(x+ y) = g(x) + h(x) + g(−y) + h(y) (8)

(see the second method where we showed that the last equality is equivalent to property (∗) for Fπ/4).
Switching x and y in (8) we get

g(y − x) + h(y + x) = g(y) + h(y) + g(−x) + h(x) (9)

and replacing x, y with −y, −x yields

g(−y + x) + h(−y − x) = g(−y) + h(−y) + g(x) + h(−x) (10)

Subtracting (9) from (8) we get

g(x)− g(−x) = g(y)− g(−y) + g(x− y)− g(y − x) (11)

and subtracting (10) from (8) we get

h(x+ y)− h(−x− y) = h(x)− h(−x) + h(y)− h(−y). (12)

From (11) we see that the function G(x) = g(x) − g(−x) is additive. Since G is continuous, we have
G(x) = cx for some constant c. Now G(1) = g(1)− g(−1) = 0, so c = 0. Thus g(x) = g(−x) for all x.
In the same way, using (12), we conclude that h(x) = h(−x) for all x. Now, taking y = −x in (8) we
get

g(2x) = 2g(x) + 2h(x)

and taking y = x we get
h(2x) = 2g(x) + 2h(x).
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It follows that g = h. Now (8) takes the form

g(x+ y) + g(x− y) = 2g(x) + 2g(y), and g(1) = 1. (13)

We claim that the only continuous function which satisfies (13) is g(x) = x2 (see an exercise below).
Thus F (x, y) = x2 + y2.

Exercise. Let g be a function which satisfies condition (13).

a) Show that g(m) = m2 for every integer m.

b) Show that g(w) = w2 for every rational number whose denominator is a power of 2.

c) Suppose that g is continuous. Show that g(x) = x2 for all x.

Exercise. Show that a continuous function F satisfies conditions (i) if and only if

F (x, y) = a(x2 + y2) + bx+ cy + d

for some real numbers a, b, c, d.

Remark. Note that if F satisfies condition (i) and h : R −→ R is any additive function, then h ◦ F
also satisfies condition (i). Since there is a large supply of discontinuous additive functions, condition
(i) itself is not sufficient to have the result from the exercise.

Problem. Is it true that a continuous function F such that F0 and Fα have property (∗) for a single
α ∈ (0, π/2) must be of the form F (x, y) = a(x2 + y2) + bx+ cy + d for some real numbers a, b, c, d?
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