
Problem 1. A point P inside a convex quadrilateral ABCD is such that the triangles ABP , BCP ,
CDP , ADP have all the same area. Prove that one of the diagonals halves the area of the quadrilateral.

Solution. We start by observing that it suffices to show that P is on one of the diagonals of ABCD.
In fact, if P is on AC then the area of triangle ABC is the sum of areas of triangles ABP and BCP ,
and the area of triangle ADC is the sum of areas of triangles ADP and CDP . Thus the diagonal AC
halves the area of our quadrilateral.

Let us also note that conversely, if the diagonal AC halves the area of our quadrilateral then taking for
P the midpoint of AC we get a point satisfying the conditions of the problem.

First solution (after Josiah Moltz) Consider the line AP . Let B1, D1 be the perpendicular projections
of B, D respectively on the line AP . The area of triangle ABP is (AP · BB1)/2 and the area of
triangle ADP is (AP ·DD1)/2. Since the triangles ABP and ADP have equal areas, we conclude that
BB1 = DD1. Thus the segments BB1 and DD1 are parallel and have equal lengths. Consequently,−−→
BB1 =

−−−→
D1D (note that points B, D are on opposite sides of the line AP ). It follows that either

B,B1, D,D1 are collinear or BB1DD1 is a parallelogram. In the former case, we have B1 = D1 is the
midpoint of BD. In the latter case, the diagonals BD and B1D1 intersect at the point which is the
midpoint of both of them. In any case, the midpoint of BD is on the line AP .

The same argument applied to the projections of B, D on the line CP shows that the midpoint of BD
is on the line CP . If the lines AP and CP are different, then P is the only point of intersection of the
two lines, so P is the midpoint of BD. If the lines AP and CP coincide, then P is on the diagonal AC.

Second solution. We start with the following useful observation. Consider an angle ∠XOY and a
number k ≥ 0. For any point P let xP , yP be the distances from P to the lines OX, OY respectively.
Then the collection of all points P inside the angle ∠XOY such that xP = kyP is a ray (i.e. half line)
originating at O. We leave a proof of this fact as an exercise.

Returning to our problem, it follows from the above observation that the collection of all points Q inside
the angle ∠BAD such that the triangles ABQ and ADQ have equal area is the ray AP→. If M is the
midpoint of BD, then the triangles ABM and ADM have equal areas. Thus the midpoint of BD is on
the line AP .

In the same way we show that the midpoint of BD is on the line CP . Now we proceed as in the first
solution.

Third solution (after Gerald Marchesi). This solution uses the notion of cross product. Let u, v be
two vectors in R3. If u, v are linearly dependent, i.e. one is a scalar multiple of the other, then the
cross product u× v = 0. Otherwise u× v is the unique vector w which is perpendicular to both u and
v, whose length is equal to the area of the parallelogram spanned by u and v and whose direction is
determined by the right-hand rule: if you put the index finger of your right hand along u and the middle
finger along v then the thump points in the direction of w. Another way to define the direction of w
is as follows: the plane determined by u and v has two sides and w points in the direction of the side
which has the following property: when looking at the plane of u and v from that side the rotation of
u towards w is counterclockwise.

The cross product has the following properties:

• u× v = −v × u, i.e. the cross product is skew-symmetric;

• (u1 + tu2)× v = u1 × v + tu2 × v for any scalar t, i.e. the cross product is bilinear.

• u× v = 0 if and only if u, v are linearly dependent.

Consider now our quadrilateral ABCD as embedded in R3 so that P is the origin (for example, we

can assume that the plane in which ABCD lies is the x − y plane z = 0). Let u1 =
−→
PA, u2 =

−−→
PB,

u3 =
−−→
PC, u4 =

−−→
PD. The fact that the triangles PAB, PBC, PCD, PAD have equal areas implies

that u1 × u2 = u2 × u3 = u3 × u4 = u4 × u1. Since u2 × u3 = −u3 × u2, we see that

0 = u1 × u2 + u3 × u2 = (u1 + u3)× u2.
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Similarly
(u1 + u3)× u4 = 0.

If u1 +u3 = 0 then P is the midpoint of the diagonal AC. Otherwise both u2 and u4 are scalar multiples
of u1 + u3. This implies that B,P,D are collinear.

Fourth solution. There is no loss in generality if we assume that P = (0, 0), A = (a1, a2), B = (b1, b2),
C = (c1, c2), D = (d1, d2) and the vertices A,B,C,D are ordered counterclockwise. Then the areas of
triangles PAB, PBC, PCD, PDA are (a1b2−a2b1)/2, (b1c2− b2c1)/2, (c1d2− c2d1)/2, (d1a2−d2a1)/2
respectively. Thus

a1b2 − a2b1 = b1c2 − b2c1 = c1d2 − c2d1 = d1a2 − d2a1.

It follows that (a1 + c1)b2 − (a2 + c2)b1 = 0 and (a1 + c1)d2 − (a2 + c2)d1 = 0. If a1 + c1 = 0 = a2 + c2
then P is the midpoint of AC. Otherwise, points (b1, b2) = B and (d1, d2) = D both belong to the line
(a1 + c1)y − (a2 + c2)x = 0. Point P = (0, 0) is also on this line, so B,P,D are collinear.

Fifth solution. Let α, β, γ, δ be the measures of the angles ∠APB, ∠BPC, ∠CPD, ∠DPA respec-
tively. Then α+ β + γ + δ = 2π and

area(4ABP ) = AP ·BP · sinα, area(4BCP ) = BP · CP · sinβ,

area(4CDP ) = CP ·DP · sin γ, area(4ADP ) = AP ·DP · sin δ = −AP ·DP · sin(α+ β + γ).

Since area(4ABP )area(4CDP ) = area(4BCP )area(4ADP ), we see that

sinα sin γ + sinβ sin(α+ β + γ) = 0.

Recall that
sin(α+ β + γ) = sin(α+ β) cos γ + cos(α+ β) sin γ

and
sinα = sin(α+ β − β) = sin(α+ β) cosβ − cos(α+ β) sinβ.

Thus
0 = sinα sin γ + sinβ sin(α+ β + γ) =

sin(α+ β) cosβ sin γ − cos(α+ β) sinβ sin γ + sin(α+ β) sinβ cos γ + cos(α+ β) sinβ sin γ =

sin(α+ β)(sinβ cos γ + cosβ sin γ) = sin(α+ β) sin(β + γ).

It follows that sin(α+ β) = 0 or sin(β + γ) = 0, i.e. α+ β = π or β + γ = π. In the former case P is on
the line AC and in the latter case P is on BD.

Sixth solution (after Matt Wolak). This solution requires some familiarity with affine transformations.
Affine transformations take figures of equal areas to figures of equal areas. Thus if T is an affine
transformation then our problem is true for a quadrilateral ABCD and point P if and only if it is
true for the quadrilateral T (A)T (B)T (C)T (D) and the point T (P ). Also, for any two triangles there is
an affine transformation mapping the first triangle onto the second. Thus, applying appropriate affine
transformation, we may assume that AB = AD. Then P is equidistant from lines AB and AD, hence
P is on the angle bisector of the angle ∠BAD and the triangles BAP and DAP are congruent (side-
angle-side). It follows that BP = DP and the line AP bisects angle ∠BPD. Since triangles CBP and
CDP have the same area, the point C is equidistant from the lines BP and CP , which easily implies
that either the lines BP , CP coincide or C is on the angle bisector AP of the angle ∠BPD. In other
words, either P is on BD or it is on AC.

Exercise. Prove the observation used in our second solution.

Exercise. Show that if the triangles ABP and ADP have equal areas and the triangles CBP and
CDP have equal areas then either AC halves the area of the quadrilateral or P is the midpoint of BD.

Exercise. Show that area(4ABP )area(4CDP ) = area(4BCP )area(4ADP ) if and only if P is on
one of the diagonals of ABCD.

Exercise. What can you say about ABCD if not only the areas but also the perimeters of the triangles
ABP , BCP , CDP , ADP coincide.
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