Problem 5. An investor in a casino is offered a choice of getting a return each time a certain game is played. The game is played by tossing N times a fair coin and recording the sequence of heads (H) and tails (T). Let h be the number of appearances of HH in the recorded sequence and let t be the number of appearances of HT. For example, when $N=5$ and THHHT is recorded then $h=2$ and $t=1$. The investor can choose to either get h cents each time the game is played, or to get t cents each time the game is played. Which choice offers a better expected return?

Solution. Let Ω_{N} be the set of all sequence of heads (H) and tails (T) of length N. Clearly Ω_{N} has 2^{N} elements and each element can occur with probability $1 / 2^{N}$. Let $X_{H T}$ be the random variable which to each sequence ω of Ω_{N} assigns the number of appearances of HT in ω. Similarly we define $X_{H H}, X_{T T}$, and $X_{T H}$. The problem asks us which of the random variable $X_{H H}$ or $X_{H T}$ has larger expectation. Recall that the expectation $E X$ of a random variable X on Ω_{N} is defined as follows:

$$
E X=\frac{1}{2^{N}} \sum_{\omega \in \Omega_{N}} X(\omega)
$$

It should be obvious that for every ω we have the equality

$$
X_{H T}(\omega)+X_{H H}(\omega)+X_{T T}(\omega)+X_{T H}(\omega)=N-1
$$

(a sequence of length N has $N-1$ pairs of consecutive letters). It follows that

$$
E X_{H T}+E X_{H H}+E X_{T T}+E X_{T H}=N-1
$$

Define ω^{*} to be the sequence obtained from ω by replacing every T with H and every H with T. It is clear that $X_{H T}(\omega)=X_{T H}\left(\omega^{*}\right)$ and $X_{H H}(\omega)=X_{T T}\left(\omega^{*}\right)$. It follows that $E X_{H H}=E X_{T T}$ and $E X_{H T}=E X_{T H}$. Thus,

$$
E X_{H T}+E X_{H H}=\frac{N-1}{2}
$$

We are now going to compute the number n_{t} of sequences ω such that $X_{H T}(\omega)=t$. Note that

$$
E X_{H T}=\frac{1}{2^{N}} \sum_{t} n_{t} t
$$

Sequences ω such that $X_{H T}(\omega)=t$ can be build as follows. We start with listing $H T t$ times. Before the first appearance of $H T$ we insert the letter $T a_{0}$ times followed by the letter H inserted b_{0} times (here a_{0}, b_{0} are some non-negative integers). Between the i-th and ($i+1$)-st appearance of $H T$ we insert a_{i} times the letter T followed by inserting b_{i} times the letter H. Finally, after the last appearance of $H T$ we insert the letter $T a_{t}$ times followed by the letter H inserted b_{t} times. The resulting sequence is in Ω_{N} if and only if $a_{0}+b_{0}+a_{1}+b_{1}+\ldots+a_{t}+b_{t}=N-2 t$. It follows that the number n_{t} is equal to the number of solutions of the equation

$$
a_{0}+b_{0}+a_{1}+b_{1}+\ldots+a_{t}+b_{t}=N-2 t
$$

in non-negative integers $a_{i}, b_{i}, i=0,1, \ldots t$. Equivalently, this is the same as the number of solutions of the equation

$$
x_{0}+y_{0}+x_{1}+y_{1}+\ldots+x_{t}+y_{t}=N+2
$$

in positive integers $x_{i}, y_{i}, i=0,1, \ldots t$ (here $x_{i}=a_{i}+1$ and $y_{i}=b_{i}+1$).
We will use now the following result.
Theorem 1. The number of solutions of the equation $z_{1}+z_{2}+\ldots+z_{m}=M$ in positive integers z_{1}, \ldots, z_{m} is equal to $\binom{M-1}{m-1}$.
Recall that $\binom{a}{b}$ is the binomial coefficient $\frac{a!}{b!(a-b)!}$, where $a \geq b \geq 0$. When $b>a$, we set $\binom{a}{b}=0$.

We will first finish our solution using Theorem 1 and then we will provide a proof of the theorem. By Theorem 1 and our discussion above we see that

$$
n_{t}=\binom{N+1}{2 t+1}
$$

Clearly $\sum_{t} n_{t}$ counts all elements in Ω_{N}, i.e.

$$
\sum_{t}\binom{N+1}{2 t+1}=2^{N}
$$

(this can be proved in other ways, for example using the binomial formula applied to $(1-1)^{N+1}=0$). It follows that

$$
E X_{H T}=\frac{1}{2^{N}} \sum_{t}\binom{N+1}{2 t+1} t=\frac{1}{2^{N+1}} \sum_{t}\binom{N+1}{2 t+1}(2 t+1)-\frac{1}{2^{N+1}} \sum_{t}\binom{N+1}{2 t+1}=\frac{1}{2^{N+1}} \sum_{t}\binom{N+1}{2 t+1}(2 t+1)-\frac{1}{2}
$$

Note that

$$
\binom{N+1}{2 t+1}(2 t+1)=(N+1)\binom{N}{2 t}
$$

Thus

$$
E X_{H T}=\frac{N+1}{2^{N+1}} \sum_{t}\binom{N}{2 t}-\frac{1}{2}=\frac{N+1}{2^{N+1}} 2^{N-1}-\frac{1}{2}=\frac{N-1}{4}
$$

We used here the fact that $\sum_{t}\binom{N}{2 t}=2^{N-1}$. This follows from our previous observation that $\sum_{t}\binom{N}{2 t+1}=2^{N-1}$ and the equality $\sum_{t}\binom{N}{t}=2^{N}$.

We showed that $E X_{H T}=(N-1) / 4$. Since we showed that $E X_{H T}+E X_{H H}=(N-1) / 2$, we conclude that

$$
E X_{H T}=E X_{H H}=\frac{N-1}{4}
$$

It remains to prove Theorem 1. Recall that $\binom{M-1}{m-1}$ is the number of subsets of size $m-1$ of the set $\{1,2, \ldots, M-1\}$. Given a solution in positive integers z_{1}, \ldots, z_{m} to the equation $z_{1}+\ldots+z_{m}=M$ we get a subset $\left\{z_{1}, z_{1}+z_{2}, \ldots, z_{1}+z_{2}+\ldots+z_{m-1}\right\}$ of the set $\{1,2, \ldots, M-1\}$. Conversely, given a subset $\left\{w_{1}, w_{2}, \ldots w_{m-1}\right\}$ of the set $\{1,2, \ldots, M-1\}$, where $0<w_{1}<w_{2}<\ldots<w_{m-1}<M$, we get a solution $z_{1}=w_{1}, z_{2}=w_{2}-w_{1}, \ldots, z_{m-1}=w_{m-1}-w_{m-2}, z_{m}=M-w_{m-1}$ of the equation $z_{1}+\ldots+z_{m}=M$ in positive integers. We established a bijection between subsets of size $m-1$ of the set $\{1,2, \ldots, M-1\}$ and the solutions to the equation $z_{1}+\ldots+z_{m}=M$ in positive integers. This clearly implies Theorem 1.

Second solution. For $\omega \in \Omega_{N}$ and $1 \leq i \leq N$ define

$$
X_{i}(\omega)= \begin{cases}1, & \text { if } \omega \text { has } \mathrm{H} \text { in the } i \text {-th place } \\ 0, & \text { if } \omega \text { has } \mathrm{T} \text { in the } i \text {-th place }\end{cases}
$$

Note that

$$
X_{H H}(\omega)=X_{1}(\omega) X_{2}(\omega)+X_{2}(\omega) X_{3}(\omega)+\ldots+X_{N-1}(\omega) X_{N}(\omega)
$$

and
$X_{H T}(\omega)=X_{1}(\omega)\left(1-X_{2}(\omega)\right)+X_{2}(\omega)\left(1-X_{3}(\omega)\right)+\ldots+X_{N-1}(\omega)\left(1-X_{N}(\omega)\right)=X_{1}(\omega)+\ldots+X_{N-1}(\omega)-X_{H H}(\omega)$.
It is easy to see that $E X_{i}=1 / 2$ and that X_{1}, \ldots, X_{N} are independent random variables. In particular, for $i \neq j$, we have $E\left(X_{i} X_{j}\right)=E X_{i} \cdot E X_{j}=1 / 4$. It is now immediate that

$$
E X_{H H}=E\left(X_{1} X_{2}\right)+E\left(X_{2} X_{3}\right)+\ldots+E\left(X_{N-1} X_{N}\right)=\frac{N-1}{4}
$$

and

$$
E X_{H T}=E X_{1}+\ldots+E X_{N-1}-E X_{H H}=\frac{N-1}{2}-\frac{N-1}{4}=\frac{N-1}{4} .
$$

Problem. What is more likely: $X_{H H}<X_{H T}$ or $X_{H H}>X_{H T}$?

