Problem 5. An investor in a casino is offered a choice of getting a return each time a certain game is played. The game is played by tossing N times a fair coin and recording the sequence of heads (H) and tails (T). Let h be the number of appearances of HH in the recorded sequence and let t be the number of appearances of HT. For example, when N = 5 and THHHT is recorded then h = 2 and t = 1. The investor can choose to either get h cents each time the game is played, or to get t cents each time the game is played. Which choice offers a better expected return?

Solution. Let Ω_N be the set of all sequence of heads (H) and tails (T) of length N. Clearly Ω_N has 2^N elements and each element can occur with probability $1/2^N$. Let X_{HT} be the random variable which to each sequence ω of Ω_N assigns the number of appearances of HT in ω . Similarly we define X_{HH} , X_{TT} , and X_{TH} . The problem asks us which of the random variable X_{HH} or X_{HT} has larger expectation. Recall that the expectation EX of a random variable X on Ω_N is defined as follows:

$$EX = \frac{1}{2^N} \sum_{\omega \in \Omega_N} X(\omega).$$

It should be obvious that for every ω we have the equality

$$X_{HT}(\omega) + X_{HH}(\omega) + X_{TT}(\omega) + X_{TH}(\omega) = N - 1$$

(a sequence of length N has N-1 pairs of consecutive letters). It follows that

$$EX_{HT} + EX_{HH} + EX_{TT} + EX_{TH} = N - 1.$$

Define ω^* to be the sequence obtained from ω by replacing every T with H and every H with T. It is clear that $X_{HT}(\omega) = X_{TH}(\omega^*)$ and $X_{HH}(\omega) = X_{TT}(\omega^*)$. It follows that $EX_{HH} = EX_{TT}$ and $EX_{HT} = EX_{TH}$. Thus,

$$EX_{HT} + EX_{HH} = \frac{N-1}{2}.$$

We are now going to compute the number n_t of sequences ω such that $X_{HT}(\omega) = t$. Note that

$$EX_{HT} = \frac{1}{2^N} \sum_t n_t t.$$

Sequences ω such that $X_{HT}(\omega) = t$ can be build as follows. We start with listing HT t times. Before the first appearance of HT we insert the letter $T a_0$ times followed by the letter H inserted b_0 times (here a_0, b_0 are some non-negative integers). Between the *i*-th and (i+1)-st appearance of HT we insert a_i times the letter T followed by inserting b_i times the letter H. Finally, after the last appearance of HT we insert the letter $T a_t$ times followed by the letter H inserted b_t times. The resulting sequence is in Ω_N if and only if $a_0 + b_0 + a_1 + b_1 + \ldots + a_t + b_t = N - 2t$. It follows that the number n_t is equal to the number of solutions of the equation

$$a_0 + b_0 + a_1 + b_1 + \ldots + a_t + b_t = N - 2t$$

in non-negative integers $a_i, b_i, i = 0, 1, ..., t$. Equivalently, this is the same as the number of solutions of the equation

$$x_0 + y_0 + x_1 + y_1 + \ldots + x_t + y_t = N + 2$$

in positive integers $x_i, y_i, i = 0, 1, \dots t$ (here $x_i = a_i + 1$ and $y_i = b_i + 1$).

We will use now the following result.

Theorem 1. The number of solutions of the equation $z_1 + z_2 + \ldots + z_m = M$ in positive integers z_1, \ldots, z_m is equal to $\binom{M-1}{m-1}$.

Recall that
$$\begin{pmatrix} a \\ b \end{pmatrix}$$
 is the binomial coefficient $\frac{a!}{b!(a-b)!}$, where $a \ge b \ge 0$. When $b > a$, we set $\begin{pmatrix} a \\ b \end{pmatrix} = 0$.

We will first finish our solution using Theorem 1 and then we will provide a proof of the theorem. By Theorem 1 and our discussion above we see that

$$n_t = \binom{N+1}{2t+1}.$$

Clearly $\sum_t n_t$ counts all elements in Ω_N , i.e.

$$\sum_{t} \binom{N+1}{2t+1} = 2^{N}$$

(this can be proved in other ways, for example using the binomial formula applied to $(1-1)^{N+1} = 0$). It follows that

$$EX_{HT} = \frac{1}{2^N} \sum_{t} \binom{N+1}{2t+1} t = \frac{1}{2^{N+1}} \sum_{t} \binom{N+1}{2t+1} (2t+1) - \frac{1}{2^{N+1}} \sum_{t} \binom{N+1}{2t+1} = \frac{1}{2^{N+1}} \sum_{t} \binom{N+1}{2t+1} (2t+1) - \frac{1}{2^{N+1}} \sum_{t} \binom{N+1}{2t+1} ($$

Note that

$$\binom{N+1}{2t+1}(2t+1) = (N+1)\binom{N}{2t}.$$

Thus

$$EX_{HT} = \frac{N+1}{2^{N+1}} \sum_{t} \binom{N}{2t} - \frac{1}{2} = \frac{N+1}{2^{N+1}} 2^{N-1} - \frac{1}{2} = \frac{N-1}{4}$$

We used here the fact that $\sum_{t} {\binom{N}{2t}} = 2^{N-1}$. This follows from our previous observation that $\sum_{t} {\binom{N}{2t+1}} = 2^{N-1}$ and the equality $\sum_{t} {\binom{N}{t}} = 2^{N}$.

We showed that $EX_{HT} = (N-1)/4$. Since we showed that $EX_{HT} + EX_{HH} = (N-1)/2$, we conclude that

$$EX_{HT} = EX_{HH} = \frac{N-1}{4}.$$

It remains to prove Theorem 1. Recall that $\binom{M-1}{m-1}$ is the number of subsets of size m-1 of the set $\{1, 2, \ldots, M-1\}$. Given a solution in positive integers z_1, \ldots, z_m to the equation $z_1 + \ldots + z_m = M$ we get a subset $\{z_1, z_1 + z_2, \ldots, z_1 + z_2 + \ldots + z_{m-1}\}$ of the set $\{1, 2, \ldots, M-1\}$. Conversely, given a subset $\{w_1, w_2, \ldots, w_{m-1}\}$ of the set $\{1, 2, \ldots, M-1\}$, where $0 < w_1 < w_2 < \ldots < w_{m-1} < M$, we get a solution $z_1 = w_1, z_2 = w_2 - w_1, \ldots, z_{m-1} = w_{m-1} - w_{m-2}, z_m = M - w_{m-1}$ of the equation $z_1 + \ldots + z_m = M$ in positive integers. We established a bijection between subsets of size m-1 of the set $\{1, 2, \ldots, M-1\}$ and the solutions to the equation $z_1 + \ldots + z_m = M$ in positive integers. This clearly implies Theorem 1.

Problem. What is more likely: $X_{HH} < X_{HT}$ or $X_{HH} > X_{HT}$?