Problem 4. A function $f : \mathbb{R}^2 \longrightarrow \mathbb{R}$ has the following properties:

- a) the partial derivatives $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ are continuous on \mathbb{R}^2 ;
- b) $\left(\frac{\partial f}{\partial x}(x,y)\right)^2 + \left(\frac{\partial f}{\partial y}(x,y)\right)^2 \le \frac{\partial f}{\partial x}(x,y)$ for every $(x,y) \in \mathbb{R}^2$;
- c) f(x,0) = 0 for all $x \in \mathbb{R}$.

Prove that f(x,y) = 0 for all $(x,y) \in \mathbb{R}^2$.

Solution. Condition b) implies that $\frac{\partial f}{\partial x}(x,y) \ge \left(\frac{\partial f}{\partial x}(x,y)\right)^2$ for every $(x,y) \in \mathbb{R}^2$. It follows that $0 \le \frac{\partial f}{\partial x}(x,y) \le 1$ for all $(x,y) \in \mathbb{R}^2$. (1)

The last inequality and condition b) yield

$$\left|\frac{\partial f}{\partial y}(x,y)\right| \le 1 \text{ for all } (x,y) \in \mathbb{R}^2$$

Suppose $y \neq 0$. By the mean value theorem we have

$$\frac{f(x,y) - f(x,0)}{y - 0} = \frac{\partial f}{\partial y}(x,u)$$

for some u between 0 and y. Since f(x,0) = 0 and $\left|\frac{\partial f}{\partial y}(x,u)\right| \le 1$, we conclude that

$$|f(x,y)| \le |y| \text{ for all } (x,y) \in \mathbb{R}^2.$$
(2)

Since $\frac{\partial f}{\partial x}(x,y) \ge 0$ for every $(x,y) \in \mathbb{R}^2$, for a fixed y the function f(x,y) is a non decreasing function of x. In other words,

$$f(x_1, y) \le f(x_2, y) \quad \text{for all } x_1, x_2, y \in \mathbb{R}.$$
(3)

Fix w > 0. For $u_1 > u$ consider the double integral

$$\int_0^w \int_u^{u_1} \frac{\partial f}{\partial x}(x,y) dx dy = \int_0^w (f(u_1,y) - f(u,y)) dy$$

From (2) we see that

$$f(u_1, y) - f(u, y) \le 2y$$

for y > 0. Thus

$$\int_0^w \int_u^{u_1} \frac{\partial f}{\partial x}(x, y) dx dy \le 2 \int_0^w y dy = w^2 \tag{4}$$

On the other hand, by Fubini's Theorem, we have

$$\int_{0}^{w} \int_{u}^{u_{1}} \frac{\partial f}{\partial x}(x,y) dx dy = \int_{u}^{u_{1}} \int_{0}^{w} \frac{\partial f}{\partial x}(x,y) dy dx \ge \int_{u}^{u_{1}} \int_{0}^{w} \left(\frac{\partial f}{\partial y}(x,y)\right)^{2} dy dx \tag{5}$$

(continuity of the partial derivative allows us to apply Fubini's Theorem). Recall now the Cauchy-Schwarz inequality:

$$\left(\int_{a}^{b} g(y)h(y)dy\right)^{2} \leq \left(\int_{a}^{b} g^{2}(y)dy\right)\left(\int_{a}^{b} h^{2}(y)dy\right)$$

$$\frac{\partial f}{\partial f}$$

Applying this inequality to $a = 0, b = w, g(y) = \frac{\partial f}{\partial y}(x, y)$ and h(y) = 1, we see that

$$\left(\int_0^w \left(\frac{\partial f}{\partial y}(x,y)\right)^2 dy\right) \int_0^w 1 dy \ge \left(\int_0^w \frac{\partial f}{\partial y}(x,y) dy\right)^2 = (f(x,w) - f(x,0))^2 = f(x,w)^2,$$

i.e.

$$\int_0^w \left(\frac{\partial f}{\partial y}(x,y)\right)^2 dy \ge \frac{1}{w} f(x,w)^2$$

This observation and (5) give us

$$\int_0^w \int_u^{u_1} \frac{\partial f}{\partial x}(x, y) dx dy \ge \frac{1}{w} \int_u^{u_1} f(x, w)^2 dx \tag{6}$$

Putting (4) and (6) together we see that

$$\int_{u}^{u_1} f(x,w)^2 dx \le w^3. \tag{7}$$

Suppose now that $f(a, w) \neq 0$ for some a. If f(a, w) > 0 then $f(x, w)^2 \geq f(a, w)^2$ for all $x \geq a$ by (3). It follows from (7) that

$$w^{3} \ge \int_{a}^{b} f(x, w)^{2} dx \ge (b - a) f(a, w)^{2}$$

for any b > a. Letting b increase to infinity, we get a contradiction $(w^3 \ge \infty)$. Similarly, if f(a, w) < 0then $f(x, w)^2 \ge f(a, w)^2$ for all $x \le a$ by (3). It follows from (7) that

$$w^3 \ge \int_b^a f(x,w)^2 dx \ge (a-b)f(a,w)^2$$

for any b < a. Letting b decrease to minus infinity, we again get a contradiction $(w^3 \ge \infty)$. This proves that our assumption that $f(a, w) \ne 0$ must be false, i.e. f(a, w) = 0.

We proved that f(a, w) = 0 for every a and every w > 0. What about w < 0? We could adjust the above argument by considering integrals \int_w^0 instead of \int_0^w and replacing w by |w| where necessary. A more clever way is to observe that the function $f_1(x, y) = f(x, -y)$ also satisfies the conditions a),b),c) of the problem. Thus $f_1(a, w) = 0$ for all w > 0 and all a, i.e. f(a, -w) = 0 for all w > 0 and all a. This completes our proof that f(x, y) = 0 for all $(x, y) \in \mathbb{R}^2$.