
Problem 4. A function f : R2 −→ R has the following properties:

a) the partial derivatives
∂f

∂x
and

∂f

∂y
are continuous on R2;

b)

(
∂f

∂x
(x, y)

)2

+

(
∂f

∂y
(x, y)

)2

≤ ∂f

∂x
(x, y) for every (x, y) ∈ R2;

c) f(x, 0) = 0 for all x ∈ R.

Prove that f(x, y) = 0 for all (x, y) ∈ R2.

Solution. Condition b) implies that
∂f

∂x
(x, y) ≥

(
∂f

∂x
(x, y)

)2

for every (x, y) ∈ R2. It follows that

0 ≤ ∂f

∂x
(x, y) ≤ 1 for all (x, y) ∈ R2. (1)

The last inequality and condition b) yield∣∣∣∣∂f∂y (x, y)

∣∣∣∣ ≤ 1 for all (x, y) ∈ R2.

Suppose y 6= 0. By the mean value theorem we have

f(x, y)− f(x, 0)

y − 0
=

∂f

∂y
(x, u)

for some u between 0 and y. Since f(x, 0) = 0 and

∣∣∣∣∂f∂y (x, u)

∣∣∣∣ ≤ 1, we conclude that

|f(x, y)| ≤ |y| for all (x, y) ∈ R2. (2)

Since
∂f

∂x
(x, y) ≥ 0 for every (x, y) ∈ R2, for a fixed y the function f(x, y) is a non decreasing function

of x. In other words,
f(x1, y) ≤ f(x2, y) for all x1, x2, y ∈ R. (3)

Fix w > 0. For u1 > u consider the double integral∫ w

0

∫ u1

u

∂f

∂x
(x, y)dxdy =

∫ w

0

(f(u1, y)− f(u, y))dy

From (2) we see that
f(u1, y)− f(u, y) ≤ 2y

for y > 0. Thus ∫ w

0

∫ u1

u

∂f

∂x
(x, y)dxdy ≤ 2

∫ w

0

ydy = w2 (4)

On the other hand, by Fubini’s Theorem, we have∫ w

0

∫ u1

u

∂f

∂x
(x, y)dxdy =

∫ u1

u

∫ w

0

∂f

∂x
(x, y)dydx ≥

∫ u1

u

∫ w

0

(
∂f

∂y
(x, y)

)2

dydx (5)

(continuity of the partial derivative allows us to apply Fubini’s Theorem). Recall now the Cauchy-
Schwarz inequality: (∫ b

a

g(y)h(y)dy

)2

≤

(∫ b

a

g2(y)dy

)(∫ b

a

h2(y)dy

)
.

Applying this inequality to a = 0, b = w, g(y) =
∂f

∂y
(x, y) and h(y) = 1, we see that(∫ w

0

(
∂f

∂y
(x, y)

)2

dy

)∫ w

0

1dy ≥
(∫ w

0

∂f

∂y
(x, y)dy

)2

= (f(x,w)− f(x, 0))
2

= f(x,w)2,

1



i.e. ∫ w

0

(
∂f

∂y
(x, y)

)2

dy ≥ 1

w
f(x,w)2.

This observation and (5) give us∫ w

0

∫ u1

u

∂f

∂x
(x, y)dxdy ≥ 1

w

∫ u1

u

f(x,w)2dx (6)

Putting (4) and (6) together we see that∫ u1

u

f(x,w)2dx ≤ w3. (7)

Suppose now that f(a,w) 6= 0 for some a. If f(a,w) > 0 then f(x,w)2 ≥ f(a,w)2 for all x ≥ a by (3).
It follows from (7) that

w3 ≥
∫ b

a

f(x,w)2dx ≥ (b− a)f(a,w)2

for any b > a. Letting b increase to infinity, we get a contradiction (w3 ≥ ∞). Similarly, if f(a,w) < 0
then f(x,w)2 ≥ f(a,w)2 for all x ≤ a by (3). It follows from (7) that

w3 ≥
∫ a

b

f(x,w)2dx ≥ (a− b)f(a,w)2

for any b < a. Letting b decrease to minus infinity, we again get a contradiction (w3 ≥ ∞). This proves
that our assumption that f(a,w) 6= 0 must be false, i.e. f(a,w) = 0.

We proved that f(a,w) = 0 for every a and every w > 0. What about w < 0? We could adjust the

above argument by considering integrals
∫ 0

w
instead of

∫ w

0
and replacing w by |w| where necessary. A

more clever way is to observe that the function f1(x, y) = f(x,−y) also satisfies the conditions a),b),c)
of the problem. Thus f1(a,w) = 0 for all w > 0 and all a, i.e. f(a,−w) = 0 for all w > 0 and all a.
This completes our proof that f(x, y) = 0 for all (x, y) ∈ R2.
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