Problem 5. For real numbers a, b, c consider the system of equations

$$x^{2} + 2yz = a$$
, $y^{2} + 2xz = b$, $z^{2} + 2xy = c$.

Prove that this system has at most one solution in real numbers x, y, z such that $x \ge y \ge z$ and $x + y + z \ge 0$. Prove that such a solution exists if and only if $a + b + c \ge 0$ and $b = \min(a, b, c)$. Here $\min(a, b, c)$ denotes the smallest number among a, b, c.

Solution. Suppose that x, y, z is a solution in real numbers to our system of equations. Adding the three equations we see that $(x + y + z)^2 = a + b + c$. Thus $a + b + c \ge 0$. Let S = xy + xz + yz. Adding the first two equations we get $x^2 + y^2 + 2yz + 2xz = a + b$ which is equivalent to $(x - y)^2 = a + b - 2S$. Similarly we see that $(y - z)^2 = b + c - 2S$ and $(x - z)^2 = a + c - 2S$. If $x \ge y \ge z$ then $x - z \ge x - y \ge 0$ and $x - z \ge y - z \ge 0$. It follows that $a + c - 2S \ge a + b - 2S$ and $a + c - 2S \ge b + c - 2S$, i.e. $c \ge b$ and $a \ge b$. In other words, $b = \min(a, b, c)$. We see that the condition that $a + b + c \ge 0$ and $b = \min(a, b, c)$ is necessary for having a solution in real numbers x, y, z such that $x \ge y \ge z$.

Suppose now that $a + b + c \ge 0$ and $b = \min(a, b, c)$. We need to show that there is unique solution in real numbers x, y, z such that $x + y + z \ge 0$ and $x \ge y \ge z$. Suppose that we have such a solution x, y, z. From our discussion above we know that

$$x - y = \sqrt{a + b - 2S}, \quad x - z = \sqrt{a + c - 2S}, \quad y - z = \sqrt{b + c - 2S}, \quad x + y + z = \sqrt{a + b + c}.$$
 (1)

Thus

$$\sqrt{a+b-2S} + \sqrt{b+c-2S} = \sqrt{a+c-2S}.$$

Squaring both sides, we get

$$a + c + 2b - 4S + 2\sqrt{(a + b - 2S)(b + c - 2S)} = a + c - 2S$$

i.e.

$$\sqrt{(a+b-2S)(b+c-2S)} = S - b.$$

Squaring again yields

$$3S^{2} - 2S(a + b + c) + (ab + ac + bc) = 0$$

We see that S is a solution to the quadratic equation $3t^2 - 2t(a + b + c) + (ab + ac + bc) = 0$. The discriminant of this equation is

$$4(a+b+c)^2 - 12(ab+ac+bc) = 4(a^2+b^2+c^2-ab-ac-bc) = 2((a-b)^2 + (a-c)^2 + (b-c)^2) = 4L,$$

where $L = ((a-b)^2 + (a-c)^2 + (b-c)^2)/2$ is non-negative. It follows that

$$(u = 0) + (u = 0) + (v = 0) / 2$$
 is non-negative. It follows

$$S = \frac{(a+b+c) \pm \sqrt{L}}{3}.$$

However, from (1) we see that $a + b \ge 2S$, $a + c \ge 2S$, $b + c \ge 2S$, so $a + b + c \ge 3S$. Thus we must have

$$S = \frac{(a+b+c) - \sqrt{L}}{3}.$$
 (2)

From (1) we see now that

$$3x = \sqrt{a+b+c} + \sqrt{a+b-2S} + \sqrt{a+c-2S}$$
(3)

$$3y = \sqrt{a+b+c} - \sqrt{a+b-2S} + \sqrt{b+c-2S}$$
(4)

$$3z = \sqrt{a+b+c} - \sqrt{a+c-2S} - \sqrt{b+c-2S}.$$
 (5)

This proves that if the solution exists then it is unique and it is given by the formulas (2)-(5).

Conversely, define S by the formula (2). Note that

$$4L = (2c - a - b)^{2} + 3(a - b)^{2} = (2a - b - c)^{2} + 3(b - c)^{2} = (2b - a - c)^{2} + 3(a - c)^{2}.$$

Thus $4L \ge (2c - a - b)^2$, so $2\sqrt{L} \ge 2c - a - b$ which implies that $a + b - 2S \ge 0$. Similarly we see that $a + c - 2S \ge 0$ and $b + c - 2S \ge 0$. Since $b \le a$ and $b \le c$ we see that

$$(a-c)^2 = ((a-b) - (c-b))^2 \le ((a-b) + (c-b))^2 = (2b-a-c)^2.$$

Thus $4L = (2b - a - c)^2 + 2(a - c)^2 \le 4(2b - a - c)^2$ and therefore $\sqrt{L} \le |2b - a - c| = a + c - 2b$. This easily implies that $S \ge b$.

Now define x, y, z by the formulas (3)-(5). We will show that x, y, z are solutions to our system of equations. First note that x, y, z are real numbers and $x + y + z = \sqrt{a + b + c} \ge 0$. Since $b \le a$ and $b \le c$, we see that $x \ge y \ge z$. Starting with the equality (2) and going backwards in our reasoning above we see that $\sqrt{a + b - 2S} + \sqrt{b + c - 2S} = \sqrt{a + c - 2S}$. This and formulas (3)-(5) imply that (1) holds for x, y, z. From (1) we see that

$$2(a+b+c) - 6S = (x-y)^2 + (x-z)^2 + (y-z)^2 = 2(x^2+y^2+z^2) - 2(xy+xz+yz) = 2(x+y+z)^2 - 6(xy+xz+yz) = 2(a+b+c) - 6(xy+xz+yz)$$

and therefore S = xy + xz + yz. Now

$$2a - 2S = (x - y)^{2} + (x - z)^{2} - (y - z)^{2} = 2x^{2} - 2xy - 2xz + 2yz = 2x^{2} - 2S + 4yz$$

so $x^2 + 2yz = a$. Similarly we show that $y^2 + 2xz = b$ and $z^2 + 2xy = c$. This completes our argument that formulas (2)-(5) give the unique solution x, y, z to our system such that $x \ge y \ge z$ and $x + y + z \ge 0$.

Exercise. Suppose that $a+b+c \ge 0$ and $b = \min(a, b, c)$. Show that in addition to the unique solution x, y, z with $x + y + z \ge 0$ and $x \ge y \ge z$ our system of equations has solutions

$$-x, -y, -z; \quad \frac{-x+2y+2z}{3}, \frac{2x-y+2z}{3}, \frac{2x+2y-z}{3}; \quad \frac{x-2y-2z}{3}, \frac{-2x+y-2z}{3}, \frac{-2x-2y+z}{3}, \frac{-2x-2y+z}{3},$$

and no other solutions.

Exercise. Verify the following identity:

$$3(xy + xz + yz)^{2} - 2(xy + xz + yz)(x + y + z)^{2} + (x^{2} + 2yz)(y^{2} + 2xz)(z^{2} + 2xy) = 0.$$

Exercise. Study the solutions to our system in complex numbers (allowing a, b, c to be complex numbers too).