
Problem 5. Consider a set S of n distinct points on a plane. A circle is called minimal for S if every
point of S is either on the circle or inside the circle and there are at lest 3 points from S on the circle.
What is the largest possible number of minimal circles a set with n points can have?

Solution. Let M(n) denote the number in question. Clearly a set with one or two points has no
minimal circles, so M(1) = M(2) = 0. If S consists of three non-collinear points A,B,C then S has
unique minimal circle, namely the circumcircle of the triangle ABC. If A,B,C are collinear, then S has
no minimal circles. Thus M(3) = 1. We will prove that M(n) = n− 2.

To proceed, we need some basic facts about convex sets. Recall that a subset P of a plane is called
convex if for any two points A,B in P the whole segment AB is contained in P . Examples of convex
sets: a segment, a line, each side of a line (every line divides the plane into two pieces, called sides of
the line), interior of any circle, any disc (i.e. a circle together with its interior). Intersection of any
collection of convex sets is convex. In particular, for any subset T of a plane there is the smallest convex
set containing T , called the convex hull of T , which is the intersection of all convex sets containing T .
Convex hull of a finite set T is a convex polygon whose vertices belong to T .

Let now S be a finite set of points, let P be the convex hull of S, and let T be the set of vertices of P , so
T is a subset of S. Clearly P is also the convex hull of T . We claim that S and T have the same minimal
circles. Indeed, if C is a minimal circle for T then there are 3 points from T on C and T is contained in
the disc B bounded by C. Since B is convex, P is contained in B and hence S is contained in B. This
means that C is a minimal circle for S. Conversely, let C be a minimal circle for S and denote by B the
disc bounded by C. Thus P is contained in B. Note that if a convex polygon is contained in B then
all its points which are not vertices are contained inside the circle C. It follows that the points from S
which are on C must belong to T . Thus C contains three points from T and therefore C is a minimal
circle for T .

For every minimal circle C of T choose three points from T which are on C. These three points form a
triangle ∆C .

Suppose now that C1 and C2 are two different minimal circles for T . The polygon P is contained in the
discs B1, B2 bounded by C1, C2 respectively. We claim that the circles C1 and C2 must intersect at two
distinct points. If the circles C1 and C2 were disjoint, then either the discs B1 B2 would be disjoint or
one of them would be in the interior of the other, which would mean that the polygon P is in the interior
of one of the discs, which is not possible (as at least three vertices of P must be on the boundary of the
disc). Similar argument shows that the circles C1 and C2 can not be tangent. Thus C1 and C2 intersect
at two points X and Y . The intersection of the discs D1, D2 is a ”lense” whose boundary consists of
two arcs with ends X,Y : one arc is a part of C1 and the other arc is a part of C2. These arcs are on
opposite sides of the line XY . It follows that the points in T on C1 are on different side of the line XY
than the points of T on C2. It follows that the triangles ∆C1

and ∆C2
are on opposite sides of XY , so

they are either disjoint, or share a vertex, or share a side (which then coincides with XY ).

Assume that T has at least 4 points. Pick a minimal circle C0 of T . Then there are two vertices A,B of
the triangle ∆C0 such that AB is a diagonal of P but not a side of P . This diagonal divides P into two
convex polygons P1 and P2: one with k ≥ 3 vertices and the other with |T | + 2 − k vertices. Then for
any minimal circle C of T , the triangle ∆C must be entirely on one side of the diagonal AB (since ∆C

and ∆C0
either coincide (if C = C0), or are disjoint, or share a vertex, or share a side). It follows that

∆C is either contained in P1 or in P2, i.e. C is either a minimal circle for the set of vertices of P1 or a
minimal circle for the set of vertices of P2. It follows that that T has at most M(k) + M(|T | + 2 − k)
minimal circles.

At this point we are ready to prove that M(n) ≤ n−2 for every n. We already know it for n = 3. Suppose
that n > 3 and that every set with k < n points has at most k − 2 minimal circles. Consider any set S
with n points and let T be the subset of S consisting of vertices of the convex hull of S. Recall than S
and T have the same minimal circles. Thus, if |T | < |S| = n, then S has at most M(|T |) ≤ |T |−2 ≤ n−2
minimal circles by the inductive assumption. Suppose that S = T , so |T | = n > 3. According to our
discussion above, the set S has at most M(k) +M(|T |+ 2− k) = M(k) +M(n+ 2− k) minimal circles
for some 3 ≤ k < |T | = n. By inductive assumption, M(k) ≤ k − 2 and M(n + 2 − k) ≤ n − k (note
that n+ 2− k < n), thus S has at most (k− 2) + n− k = n− 2 minimal circles. Since S was arbitrary,
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M(n) ≤ n− 2.

To complete the solution it suffices to construct for each n ≥ 3 a convex n-gon whose set Sn of vertices
has at least n− 2 minimal circles (then it must have exactly n− 2 minimal circles). Our construction is
inductive. For n = 3 any triangle works. Suppose that the set Sn of vertices of some convex n-gon has
at least n− 2 minimal circles C1, . . . , Cn−2. Pick a side AB of this n-gon. All vertices of the n−gon are
on one side of the line AB. Let H be the opposite side of this line. The midpoint M of AB is in the
interior of all the circles Ci. Let V be a vertex of the n−gon different from A and B. Note that if N is
any point in H (i.e. on opposite side of AB than V) then the circumcircle of the triangle ABN contains
V in its interior if and only if ∠ANB + ∠AV B > π (i.e. the sum of these two angles is bigger than
180 degrees). We can take N on the perpendicular bisector of AB close enough to M so that N is in
the interior of all the circles Ci and the angle ∠ANB is as close to π as we wish, so in particular bigger
than all the angles π −∠AV B where V is a vertex of our n-gon. Then the circumcirlcle of the triangle
ANB is a minimal circle of the set Sn ∪ {N} and each of the circles Ci is also a minimal circle of this
set. Thus we constructed a set Sn+1 = Sn ∪ {N} which consists of vertices of a convex (n+ 1)-gon and
which has at least n− 1 = (n+ 1)− 2 minimal circles.
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