Problem 3. Given a sequence $a_{1}, a_{2}, \ldots, a_{n}$ of n real numbers we construct a new sequence of $n-1$ numbers as follows: first we set $b_{i}=\max \left(a_{i}, a_{i+1}\right)$ for $i=1, \ldots, n-1$. Then we choose randomly one index i and add 1 to b_{i}. This is our new sequence. After repeating this operation $n-1$ times we arrive at a single number A. Prove that if $a_{1}+\ldots+a_{n}=0$, then $A \geq \log _{2} n$.
Here $\max (a, b)$ denotes the larger of the numbers a, b.
Solution. Our procedure assigns to a sequence $a_{1}, a_{2}, \ldots, a_{n}$ of n real numbers a new sequence $b_{1}, b_{2}, \ldots, b_{i}+1, \ldots, b_{n-1}$ of $n-1$ real numbers, where i is a randomly chosen integer between 1 and $n-1$ and $b_{j}=\max \left(a_{j}, a_{j+1}\right)$ for $j=1, \ldots, n-1$. Our solution is based on the following key observation:

$$
2^{b_{1}}+\ldots+2^{b_{i}+1}+\ldots+2^{b_{n-1}} \geq 2^{a_{1}}+\ldots+2^{a_{n}}
$$

To justify this inequality note that $b_{j} \geq a_{j}$ and $b_{j} \geq a_{j+1}$ for all j. It follows that

$$
\begin{gathered}
2^{b_{j}} \geq 2^{a_{j}} \text { for } \mathrm{j}=1, \ldots, \mathrm{i}-1, \\
2^{b_{i}+1}=2^{b_{i}}+2^{b_{i}} \geq 2^{a_{i}}+2^{a_{i+1}} \\
2^{b_{j}} \geq 2^{a_{j+1}} \text { for } \mathrm{j}=\mathrm{i}+1, \ldots, \mathrm{n}-1
\end{gathered}
$$

Adding all these inequalities yields our claim.
Applying our key observation to each step of the construction we see that

$$
2^{A} \geq 2^{a_{1}}+\ldots+2^{a_{n}}
$$

Recall now the AM-GM inequality, which states that for any non-negative numbers u_{1}, \ldots, u_{m} their arithmetic mean (AM) $\frac{u_{1}+\ldots+u_{m}}{m}$ is at least as big as their geometric mean (GM) $\sqrt[m]{u_{1} u_{2} \ldots u_{m}}$, i.e.

$$
\frac{u_{1}+\ldots+u_{m}}{m} \geq \sqrt[m]{u_{1} u_{2} \ldots u_{m}}
$$

(and equality holds if and only if $u_{1}=\ldots=u_{m}$). It follows that

$$
2^{a} \geq 2^{a_{1}}+\ldots+2^{a_{n}} \geq n \sqrt[n]{2^{a_{1}} \cdot 2^{a_{2}} \cdot \ldots \cdot 2^{a_{n}}}=n 2^{\left(a_{1}+\ldots+a_{n}\right) / n}
$$

and consequently,

$$
A \geq \log _{2} n+\frac{a_{1}+\ldots+a_{n}}{n}
$$

In particular, if $a_{1}+\ldots+a_{n}=0$ then $A \geq \log _{2} n$.

The following problems seem natural questions to ask.
Problem. Prove that if the inequality in the problem is an equality then $a_{1}=\ldots=a_{n}=0$ and n is a power of 2. Conversely, show that if n is a power of 2 and $a_{1}=\ldots=a_{n}=0$ then the equality holds for some choices of the index in each step.

Problem. Note that if $a_{1}=\ldots=a_{n}=0$ then A is an integer hence $A \geq\left\lceil\log _{2} n\right\rceil$. Is this inequality always true? Can the equality hold?

Finally, using the ideas of this problem we suggest solving the following problem from the 2023 IMO (International Mathematical Olympiad):

Problem. Let n be a positive integer. A Japanese triangle consists of $1+2+\cdots+n$ circles arranged in an equilateral triangular shape such that for each $i=1,2, \ldots n$, the i-th row contains exactly i circles, exactly one of which is coloured red. A ninja path in a Japanese triangle is a sequence of n circles obtained by starting in the top row, then repeatedly going from a circle to one of the two circles immediately below it and finishing in the bottom row. Below is an example of a Japanese triangle with $n=6$, along with a ninja path in that triangle containing two red circles. In terms of n, find the greatest k such that in each Japanese triangle there is a ninja path containing at least k red circles.

