Problem 4. The number $N=\frac{1}{2} a b\left(a^{4}+b^{4}\right)$, where a, b are positive integers such that

$$
a^{4}+b^{4}=1+a b(1+2+3+\ldots+(a+b))
$$

What is N ?
Solution. We will show that $N=2022$. Recall that $1+2+\ldots+n=n(n+1) / 2$. Thus our condition can be stated as

$$
\begin{equation*}
a^{4}+b^{4}=1+a b(a+b)(a+b+1) / 2 . \tag{1}
\end{equation*}
$$

Setting $u=a+b, w=a-b$, we see that $a=(u+w) / 2, b=(u-w) / 2$ so (1) is equivalent to

$$
\begin{equation*}
(u+w)^{4}+(u-w)^{4}=16+2\left(u^{2}-w^{2}\right) u(u+1) . \tag{2}
\end{equation*}
$$

Using the binomial formula to expand the left hand side of (2) we get

$$
\begin{equation*}
2 u^{4}+12 u^{2} w^{2}+2 w^{4}=16+2 u^{4}+2 u^{3}-2 w^{2}\left(u^{2}+u\right) . \tag{3}
\end{equation*}
$$

which is equivalent to

$$
\begin{equation*}
w^{2}\left(w^{2}+7 u^{2}+u\right)=8+u^{3} . \tag{4}
\end{equation*}
$$

Note that $w \neq 0$, as otherwise we would have $u^{3}=-2$, which in not possible as $u=a+b>0$. It follows that $w^{2} \geq 1$.

Suppose that $w^{2}>1$. Then $w^{2} \geq 4$ and $w^{2}\left(u+w^{2}\right)>8$. It follows from (4) that $7 u^{2} w^{2}<u^{3}$, i.e.

$$
\begin{equation*}
7 w^{2}<u \tag{5}
\end{equation*}
$$

Using (4) again, we see that

$$
u^{3}<u^{3}+8=w^{2}\left(w^{2}+7 u^{2}+u\right)<w^{2}\left(\frac{u}{7}+7 u^{2}+u\right)=7 w^{2} u\left(u+\frac{8}{49}\right)
$$

which implies that

$$
u-1<\frac{u^{2}}{u+\frac{8}{49}}<7 w^{2}
$$

By (5), we have $u-1<7 w^{2}<u$. This however is not possible since u and $7 w^{2}$ are integers. We see that the assumption $w^{2}>1$ leads to a contradiction. Thus $w^{2}=1$ and (4) yields $7 u^{2}+u+1=8+u^{3}$, i.e. $\left(u^{2}-1\right)(u-7)=0$. Since $u=a+b \geq 2$, we have $u=7$. Thus $u=7$ and $w^{2}=1$. If $w=1$, we get $a=4, b=3$ and if $w=-1$ we get $a=3, b=4$. In both cases, we have $N=2022$.

Remark. I created this problem as a new year puzzler to welcome the year 2022.

As a good exercise to practice the above techniques we suggest the following
Problem. Find all integers a, b which satisfy (1).

