Problem 2. Find all positive integers n such that $9 n+19$ and $3 n^{2}+9 n+5$ are both cubes of integers.
Solution. Suppose that $9 n+19=a^{3}$ and $3 n^{2}+9 n+5=b^{3}$ for some positive integers a, b. Then

$$
(a b)^{3}=(9 n+19)\left(3 n^{2}+9 n+5\right)=27 n^{3}+138 n^{2}+216 n+95
$$

Note that

$$
(3 n+4)^{3}=27 n^{3}+108 n^{2}+144 n+64<(a b)^{3}
$$

and

$$
(3 n+6)^{3}=27 n^{3}+162 n^{2}+324 n+216>(a b)^{3} .
$$

Thus we must have $(a b)^{3}=(3 n+5)^{3}$, i.e.

$$
27 n^{3}+138 n^{2}+216 n+95=27 n^{3}+135 n^{2}+225 n+125
$$

This is equivalent to $n^{2}-3 n-10=0$, i.e. $n=5$. Now it is easy to verify that $n=5$ indeed is a solution: $9 n+19=64=4^{3}$ and $3 n^{2}+9 n+5=125=5^{3}$.

Exercise. Is there a positive integer n such that $4 n+1$ and $9 n+1$ are squares?
Remark. It is true, but much harder to prove, that the only integers n such that $3 n^{2}+9 n+5$ is a cube are $n=-8,-2,-1,5$.

