Problem 4. A sequence $\left(a_{n}\right)$ of positive integers has been created using the following process:

$$
a_{n+1}=a_{n}+3 \frac{a_{n}}{p_{n}}
$$

where p_{n} is a prime divisor of a_{n}. Prove that there is a positive integer k such that the equality $a_{n+k}=2 k a_{n}$ holds for infinitely many values of n.

Solution. Any integer m can be written in a unique way as $b c$, where all prime divisors of b are among $\{2,3,5\}$ and all prime divisors of c are bigger than 5 . We will call a the small divisor of m and b the large divisor of m.

Write $a_{n}=b_{n} c_{n}$, where b_{n} is the small divisor of a_{n} and c_{n} is the large divisor of a_{n}. Note that if $p_{n}>5$ then $p_{n} \mid c_{n}$ and $p_{n}+3$ is even. Since $a_{n+1}=2 b_{n} \frac{c_{n}}{p_{n}} \frac{p_{n}+3}{2}$, we see than the large divisor c_{n+1} of a_{n+1} is at most $\frac{c_{n}}{p_{n}} \frac{p_{n}+3}{2}$. It follows that $c_{n+1}<c_{n}$ if $p_{n}>5$.
If $p_{n}=2$ then $a_{n+1}=5 \frac{b_{n}}{2} c_{n}$, so $b_{n+1}=5 \frac{b_{n}}{2}$ and $c_{n+1}=c_{n}$.
If $p_{n}=3$ then $a_{n+1}=6 \frac{b_{n}}{3} c_{n}=2 b_{n} c_{n}$, so $b_{n+1}=2 b_{n}$ and $c_{n+1}=c_{n}$.
If $p_{n}=5$ then $a_{n+1}=8 \frac{b_{n}}{5} c_{n}$, so $b_{n+1}=8 \frac{b_{n}}{5}$ and $c_{n+1}=c_{n}$.
It follows that the sequence c_{n} is a non-decreasing sequence of positive integers and therefore it must be constant from some point on: there is N such that $c_{N}=c_{N+1}=c_{N+2}=\ldots$. Furthermore, $p_{n} \in\{2,3,5\}$ for all $n \geq N$ (as otherwise we would have $c_{n+1}<c_{n}$).

Observe now that if $p_{n}=3$ then $a_{n+1}=2 a_{n}$. Thus, if $p_{n}=3$ for infinitely many n then $k=1$ works.
Suppose now that $p_{n}=3$ for only infinitely many n. Thus there is M such that $p_{n} \in\{2,5\}$ for all $n \geq M$. Note that if $p_{n}=\ldots=p_{n+k}=p$ then p^{k+1} divides a_{n}. This implies that $p_{n}=2$ must happen for infinitely many n. Otherwise we would have m such that $p_{n}=5$ for all $n \geq m$ and a_{m} would be divisible by every power of 5 , which is not possible. Similarly $p_{n}=5$ must happen for infinitely many n. It follows that there are infinitely many values of n such that $p_{n}=2$ and $p_{n+1}=5$. For such n we have $a_{n+2}=4 a_{n}$. Thus $k=2$ works in this case.

