Problem 2. Find all positive integers n such that $n!$ divides $(2 n+1)^{2 n}-1$.
(Here $n!=1 \cdot 2 \cdot \ldots \cdot n$ is the factorial of n).
Solution. We start by observing that $2 n+1$ must be a prime number. Indeed, if $2 n+1=a b$ with $1<a \leq b$ then $a=(2 n+1) / b \leq(2 n+1) / 2=n+1 / 2$. Thus $a \leq n$ and therefore a divides n ! but a does not divide $(2 n+1)^{2 n}-1=a^{2 n} b^{2 n}-1$. It follows that n ! cannot divide $(2 n+1)^{2 n}-1$ if $2 n+1$ is composite.

Our solution is based on an analysis of the highest power of 2 which divides a number of the form $a^{k}-1$ or $a^{k}+1$, where a is an odd integer.

Let us assume first that k is odd. We will use the following simple observation: if k is odd then $1+a+a^{2}+\ldots+a^{k-1}$ is odd. In fact, we are adding an odd number of odd numbers, hence we get an odd number. Since

$$
a^{k}-1=(a-1)\left(1+a+\ldots+a^{k-1}\right)
$$

we see that the largest power of 2 which divides $a^{k}-1$ is the same as the largest power of 2 which divides $a-1$.
Similarly, since

$$
a^{k}+1=(a+1)\left(1+(-a)+(-a)^{2}+\ldots+(-a)^{k-1}\right)
$$

the largest power of 2 which divides $a^{k}+1$ is the same as the largest power of 2 which divides $a+1$.
Suppose now that $k=2^{s} m$ is even, where m is odd and $s \geq 1$. We will use the following simple but very useful observation: if b is an odd integer then $b^{2}+1$ is even but not divisible by 4 . Indeed, writing $b=2 c+1$ we see that $b^{2}+1=2\left[2\left(c^{2}+c\right)+1\right]$ is twice an odd number. It follows that when a is odd and k is even then the highest power of 2 which divides $a^{k}+1$ is 2 .

In order to analyze the highest power of 2 dividing $a^{k}-1$ note that

$$
a^{k}-1=a^{2^{s} m}-1=\left(a^{m}-1\right)\left(a^{m}+1\right)\left(a^{2 m}+1\right) \ldots\left(a^{2^{s-1} m}+1\right) .
$$

Our previous discussion tells us for each factor on the right the highest power of 2 dividing it. Putting it together we see that if 2^{u} is the highest power of 2 which divides $a-1$ and 2^{w} is the highest power of 2 which divides $a+1$ then $2^{u+w+s-1}$ is the highest power of 2 which divides $a^{k}-1$.

We are going to apply the above observation when $a=2 n+1$ and $k=2 n$.
Case 1: n is odd. Then $s=1, u=1, w=t+1$, where 2^{t} is the largest power of 2 which divides $n+1$. Thus 2^{t+2} is the largest power of 2 which divides $(2 n+1)^{2 n}-1$.

On the other hand, if $n>7$ then $2<(n+1) / 2<n-3<n-1$ so n ! is divisible by $(n+1)(n-3)(n-1)$ and $(n+1)(n-3)(n-1)$ is divisible by 2^{t+3} (since $n-3, n-1$ are even and one of them is divisible by 4). It follows that n ! cannot divide $(2 n+1)^{2 n}-1$ when $n>7$. Thus $n \leq 7$. Since $2 n+1$ must be a prime, $n \in\{1,3,5\}$. A simple verification confirms that conversely, if $n \in\{1,3,5\}$ then n ! divides $(2 n+1)^{2 n}-1$. Thus the only odd numbers which satisfy the conditions of the problem are $1,3,5$.
Case 2: n is even. Write $n=2^{t} m$, where m is odd and $t \geq 1$. In this case $s=t+1, u=t+1, w=1$. Thus $2^{2 t+2}$ is the largest power of 2 which divides $(2 n+1)^{2 n}-1$.

Suppose now that n ! divides $(2 n+1)^{2 n}-1$. Then the highest power of 2 which divides n ! can not exceed $2^{2 t+2}$.

If $m \geq 3$ then n ! is divisible by $2^{t} \cdot\left(2 \cdot 2^{t}\right) \cdot\left(3 \cdot 2^{t}\right)$ so $2^{3 t+1}$ divides n !. It follows that $3 t+1 \leq 2 t+2$ i.e. $t \leq 1$. Thus $t=1$ and $n!=(2 m)!$ is not divisible by $2^{2 t+3}=2^{5}$. Only $m=3$ works since 2^{5} divides $(2 m)$! for $m>3$. Conversely, straightforward verification shows that $n=6$ works since 6 ! divides $13^{12}-1$.

If $m=1$ then $n=2^{t}$ and $n!$ is divisible by $2 \cdot 2^{2} \cdot \ldots \cdot 2^{t}=2^{t(t+1) / 2}$. Thus $t(t+1) / 2 \leq 2 t+2$, i.e. $t^{2}-3 t-4=(t-4)(t+1) \leq 0$. This yields $t \leq 4$, i.e. $n \in\{2,4,8,16\}$. A simple direct verification shows that only $n=2$ works (as $2 \cdot 4+1=9,2 \cdot 16+1=33$ are not primes and $(2 \cdot 8+1)^{2 \cdot 8}-1=17^{16}-1$ is not divisible by 7).

Putting all the above discussion together we see that n ! divides $(2 n+1)^{2 n}-1$ if and only if n is one of $1,2,3,5,6$

Exercise. Use the binomial formula to justify the value of the highest power of 2 which divides $(2 n+1)^{2 n}-1$ in case 1 and case 2 of the above solution (this was the method used in the solution submitted by Prof. Kargin.)

A slightly more challenging than Problem 2 is the following problem.
Problem. Find all positive integers n such that n ! divides $\left(n+1^{2}\right)\left(n+2^{2}\right) \ldots\left(n+n^{2}\right)$.
I do not know the answer to the following question:
Question. Is the set of prime numbers p such that every prime q smaller than $p / 2$ divides $p^{p-1}-1$ finite?

We end our discussion with two exercises which expand on the technique used in our solution and which are very useful in many problems in elementary number theory.

Exercise. Recall thal $\lfloor x\rfloor$ denotes the largest integer not exceeding x. Prove that if $n>1$ and $p \leq n$ is a prime then the highest power of p which divides $n!$ is p^{e}, where

$$
e=\left\lfloor\frac{n}{p}\right\rfloor+\left\lfloor\frac{n}{p^{2}}\right\rfloor+\left\lfloor\frac{n}{p^{3}}\right\rfloor+\ldots
$$

(note that the sum is actually finite since $\left\lfloor n / p^{k}\right\rfloor=0$ when $p^{k}>n$).
Hint. There are several ways to prove this, but I suggest a proof by induction on n. First show that if n, k are positive integers then

$$
\left\lfloor\frac{n+1}{k}\right\rfloor= \begin{cases}\left\lfloor\frac{n}{k}\right\rfloor & \text { if } k \text { does not divide } n+1 \\ 1+\left\lfloor\frac{n}{k}\right\rfloor & \text { if } k \text { divides } n+1\end{cases}
$$

The goal of the next exercise is to study the highest power of an odd prime p which divides a number of the form $a^{k} \pm 1$. The case $p=2$ was done in the solution to our original problem.

Exercise. Let p be an odd prime number and let a be an integer not divisible by p.

1. Show that the smallest positive integer d such p divides $a^{d}-1$ exists and that divides $p-1 . d$ is called the order of a modulo p. Hint: Use Fermat's Little Theorem.
2. Prove that p divides $a^{k}-1$ if and only if d divides k.
3. Prove that if d is odd then p does not divide $a^{k}+1$ for any k. Show that if $d=2 l$ is even then p divides $a^{k}+1$ if and only if k / l is an odd integer.
4. Suppose that p^{u} is the highest power of p which divides $a^{d}-1$. Prove that if d divides k and p^{s} is the highest power of p dividing k then p^{u+s} is the highest power of p dividing $a^{k}-1$.
5. Show that if $d=2 l$ is even then p^{u} (defined in part 4.) is the highest power of p dividing $a^{l}+1$. Show that if k / l is an odd integer and p^{s} is the highest power of p dividing k then p^{u+s} is the highest power of p dividing $a^{k}+1$.
