
Problem 2. Find all positive integers n such that n! divides (2n + 1)2n − 1.
(Here n! = 1 · 2 · . . . · n is the factorial of n).

Solution. We start by observing that 2n + 1 must be a prime number. Indeed, if 2n + 1 = ab with
1 < a ≤ b then a = (2n + 1)/b ≤ (2n + 1)/2 = n + 1/2. Thus a ≤ n and therefore a divides n! but a
does not divide (2n + 1)2n − 1 = a2nb2n − 1. It follows that n! cannot divide (2n + 1)2n − 1 if 2n + 1 is
composite.

Our solution is based on an analysis of the highest power of 2 which divides a number of the form ak−1
or ak + 1, where a is an odd integer.

Let us assume first that k is odd. We will use the following simple observation: if k is odd then
1 + a + a2 + . . . + ak−1 is odd. In fact, we are adding an odd number of odd numbers, hence we get an
odd number. Since

ak − 1 = (a− 1)(1 + a + . . . + ak−1)

we see that the largest power of 2 which divides ak − 1 is the same as the largest power of 2 which
divides a− 1.
Similarly, since

ak + 1 = (a + 1)(1 + (−a) + (−a)2 + . . . + (−a)k−1),

the largest power of 2 which divides ak + 1 is the same as the largest power of 2 which divides a + 1.

Suppose now that k = 2sm is even, where m is odd and s ≥ 1. We will use the following simple but
very useful observation: if b is an odd integer then b2 + 1 is even but not divisible by 4. Indeed, writing
b = 2c + 1 we see that b2 + 1 = 2[2(c2 + c) + 1] is twice an odd number. It follows that when a is odd
and k is even then the highest power of 2 which divides ak + 1 is 2.

In order to analyze the highest power of 2 dividing ak − 1 note that

ak − 1 = a2
sm − 1 = (am − 1)(am + 1)(a2m + 1) . . . (a2

s−1m + 1).

Our previous discussion tells us for each factor on the right the highest power of 2 dividing it. Putting
it together we see that if 2u is the highest power of 2 which divides a − 1 and 2w is the highest power
of 2 which divides a + 1 then 2u+w+s−1 is the highest power of 2 which divides ak − 1.

We are going to apply the above observation when a = 2n + 1 and k = 2n.

Case 1: n is odd. Then s = 1, u = 1, w = t+ 1, where 2t is the largest power of 2 which divides n+ 1.
Thus 2t+2 is the largest power of 2 which divides (2n + 1)2n − 1.

On the other hand, if n > 7 then 2 < (n+ 1)/2 < n−3 < n−1 so n! is divisible by (n+ 1)(n−3)(n−1)
and (n + 1)(n − 3)(n − 1) is divisible by 2t+3 (since n − 3, n − 1 are even and one of them is divisible
by 4). It follows that n! cannot divide (2n + 1)2n − 1 when n > 7. Thus n ≤ 7. Since 2n + 1 must
be a prime, n ∈ {1, 3, 5}. A simple verification confirms that conversely, if n ∈ {1, 3, 5} then n! divides
(2n + 1)2n − 1. Thus the only odd numbers which satisfy the conditions of the problem are 1, 3, 5.

Case 2: n is even. Write n = 2tm, where m is odd and t ≥ 1. In this case s = t + 1, u = t + 1, w = 1.
Thus 22t+2 is the largest power of 2 which divides (2n + 1)2n − 1.

Suppose now that n! divides (2n+1)2n−1. Then the highest power of 2 which divides n! can not exceed
22t+2.

If m ≥ 3 then n! is divisible by 2t · (2 · 2t) · (3 · 2t) so 23t+1 divides n!. It follows that 3t+ 1 ≤ 2t+ 2 i.e.
t ≤ 1. Thus t = 1 and n! = (2m)! is not divisible by 22t+3 = 25. Only m = 3 works since 25 divides (2m)!
for m > 3. Conversely, straightforward verification shows that n = 6 works since 6! divides 1312 − 1.

If m = 1 then n = 2t and n! is divisible by 2 · 22 · . . . · 2t = 2t(t+1)/2. Thus t(t + 1)/2 ≤ 2t + 2, i.e.
t2−3t−4 = (t−4)(t+ 1) ≤ 0. This yields t ≤ 4, i.e. n ∈ {2, 4, 8, 16}. A simple direct verification shows
that only n = 2 works (as 2 · 4 + 1 = 9, 2 · 16 + 1 = 33 are not primes and (2 · 8 + 1)2·8 − 1 = 1716 − 1 is
not divisible by 7).
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Putting all the above discussion together we see that n! divides (2n + 1)2n − 1 if and only if n is one of
1, 2, 3, 5, 6

Exercise. Use the binomial formula to justify the value of the highest power of 2 which divides
(2n + 1)2n − 1 in case 1 and case 2 of the above solution (this was the method used in the solution
submitted by Prof. Kargin.)

A slightly more challenging than Problem 2 is the following problem.

Problem. Find all positive integers n such that n! divides (n + 12)(n + 22) . . . (n + n2).

I do not know the answer to the following question:

Question. Is the set of prime numbers p such that every prime q smaller than p/2 divides pp−1 − 1
finite?

We end our discussion with two exercises which expand on the technique used in our solution and which
are very useful in many problems in elementary number theory.

Exercise. Recall thal bxc denotes the largest integer not exceeding x. Prove that if n > 1 and p ≤ n
is a prime then the highest power of p which divides n! is pe, where

e =

⌊
n

p

⌋
+

⌊
n

p2

⌋
+

⌊
n

p3

⌋
+ . . .

(note that the sum is actually finite since bn/pkc = 0 when pk > n).

Hint. There are several ways to prove this, but I suggest a proof by induction on n. First show that if
n, k are positive integers then⌊

n + 1

k

⌋
=

{⌊
n
k

⌋
if k does not divide n + 1

1 +
⌊
n
k

⌋
if k divides n + 1

.

The goal of the next exercise is to study the highest power of an odd prime p which divides a number
of the form ak ± 1. The case p = 2 was done in the solution to our original problem.

Exercise. Let p be an odd prime number and let a be an integer not divisible by p.

1. Show that the smallest positive integer d such p divides ad − 1 exists and that d divides p − 1. d is
called the order of a modulo p. Hint: Use Fermat’s Little Theorem.

2. Prove that p divides ak − 1 if and only if d divides k.

3. Prove that if d is odd then p does not divide ak + 1 for any k. Show that if d = 2l is even then p
divides ak + 1 if and only if k/l is an odd integer.

4. Suppose that pu is the highest power of p which divides ad − 1. Prove that if d divides k and ps is
the highest power of p dividing k then pu+s is the highest power of p dividing ak − 1.

3. Show that if d = 2l is even then pu (defined in part 4.) is the highest power of p dividing al + 1.
Show that if k/l is an odd integer and ps is the highest power of p dividing k then pu+s is the highest
power of p dividing ak + 1.
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