Problem 5. Positive integers $a<b<c$ are lengths of sides of a right triangle whose inradius is equal to $\operatorname{gcd}(a+1, b)^{2}$. Find a, b, c.

Solution. We start by recalling some basic concepts from elementary geometry. The inradius of a triangle is the radius of the circle inscribed in the triangle (called the incircle). The center of the incircle is called the incenter of the triangle. The incenter coincides with the point where all three angle bisectors of the triangle intersect.

Let O and r be the incenter and inradius of a triangle $\triangle A B C, a=B C, b=A C, c=A B$. In each of the triangles $\triangle A O B, \triangle B O C$, and $\triangle C O A$ the height from vertex O is equal to r. It follows that the area of the triangle $\triangle A B C$ is equal to $a r / 2+b r / 2+c r / 2=r(a+b+c) / 2$.

Suppose now that the incircle is tangent to $A B$ at C_{1}, to $B C$ at A_{1}, and to $A C$ at B_{1}. Then $A C_{1}=$ $A B_{1}=x, B A_{1}=B C_{1}=y, C A_{1}=C B_{1}=z$ and $x+y=c, x+z=b, y+z=a$. Tus $z=$ $(a+b-c) / 2, y=(a+c-b) / 2, x=(b+c-a) / 2$.

Suppose now that the angle $\angle A C B$ is right. Then the quadrilateral $C A_{1} O B_{1}$ is a square. Thus $z=r=(a+b-c) / 2$. Another way to see this is to look at the area: $a b / 2=r(a+b+c) / 2$, i.e. $(a+b+c) r=a b$. Now

$$
(a+b+c)(a+b-c)=(a+b)^{2}-c^{2}=a^{2}+b^{2}-c^{2}+2 a b=2 a b
$$

This implies that $r=(a+b-c) / 2$.
We are ready now for our first solution.
Solution 1 (inspired by Yuqiao Huang's solution). Let r be the inradius of our triangle, so $r=t^{2}$, where $t=\operatorname{gcd}(a+1, b)$. Note that t divides $a+1$, so t and a are relatively prime. Thus r and a are also relatively prime and therefore $a-2 r$ and r are relatively prime. We will need this later.

The formula for the inradius of a right triangle yields $c=a+b-2 r$. We see that $a-2 r=c-b$ is positive. From $a b=r(a+b+c)$ and $2 r=a+b-c$ we get
$(a-2 r)(b-2 r)=a b-2 r(a+b)+4 r^{2}=r(a+b+c)-2 r(a+b)+4 r^{2}=4 r^{2}-r(a+b-c)=4 r^{2}-2 r^{2}=2 r^{2}$.
It follows that $a-2 r$ divides $2 r^{2}$. But we have seen that $a-2 r$ and r^{2} are relatively prime, hence $a-2 r$ must divide 2. It follows that $a-2 r=1$ or $a-2 r=2$, i.e. $(a+1)-2 r=2$ or $(a+1)-2 r=3$. Recall now that $r=t^{2}$ and t divides $a+1$, so t divides $a+1-2 r$. This leaves us with only 4 possibilities:

- $t=1, a-2 r=1$, and $b-2 r=2 r^{2}$, so $r=1, a=3, b=4$. However $\operatorname{gcd}(a+1, b)^{2}=16 \neq 1$, so this case is not possible.
- $t=2, a-2 r=1$, and $b-2 r=2 r^{2}$, so $r=4, a=9, b=40$. However $\operatorname{gcd}(a+1, b)^{2}=100 \neq 4$, so this case is not possible.
- $t=1, a-2 r=2$, and $b-2 r=r^{2}$, so $r=1, a=4, b=3$. However $4>3$, which contradicts our assumption that $a<b$, so this case is not possible.
- $t=3, a-2 r=2$, and $b-2 r=r^{2}$, so $r=9, a=20, b=99$. It follows that $c=101$ and this triangle satisfies the conditions of the problem.

So our problem has unique solution $a=20, b=99, c=101$.

Before we state our second solution, we review some well known terminology. A right triangle in which the lengths of all three sides are integers is called a Pythagorean triangle. A Pythagorean triple consists of three positive integers a, b, c such that $a^{2}+b^{2}=c^{2}$, i.e. it consists of side-lengths of a Pythagorean triangle. A Pythagorean triple (a, b, c) or the corresponding Pythagorean triangle are called primitive if the integers a, b, c do not have a common divisor greater than 1 . It is easy to see that every Pythagorean triple is of the form $(d a, d b, d c)$ where (a, b, c) is a primitive Pythagorean triple and d is a positive integer.

We claim that in any Pythegorean triple (a, b, c) one of the numbers a, b must be even. Indeed, if $a=2 m+1$ and $b=2 n+1$ were both odd then $a^{2}+b^{2}=4\left(m^{2}+n^{2}+m+n\right)+2$ so $a^{2}+b^{2}$ would be
even but not divisible by 4 . On the other hand, $a^{2}+b^{2}=c^{2}$ so c would be even, hence $c^{2}=a^{2}+b^{2}$ would be divisible by 4 , a contradiction.

If (a, b, c) is a Pythagorean triple and a is even, then either both b and c are odd, or they both are even. In any case, the number $a+b-c$ is even and therefore the inradius $r=(a+b-c) / 2$ is an integer. Thus the inradius of any Pythagorean triangle is an integer. In particular, if r and a are relatively prime, then the Pythagorean triangle is primitive. Thus any triangle satisfying the conditions of our problem must be primitive.

Suppose now that (a, b, c) is a primitive Pythagorean triple and a is even. Then b and c must be both odd and relatively prime. We have

$$
\left(\frac{a}{2}\right)^{2}=\frac{c^{2}-b^{2}}{4}=\frac{c-b}{2} \frac{c+b}{2}
$$

Note that $m=(c+b) / 2$ and $n=(c-b) / 2$ are integers and they are relatively prime. Indeed, any common divisor of m and n would also divide both $m+n=c$ and $m-n=b$, but b and c are relatively prime. Note also that m and n are of different parity, as c and b are odd. We will now use the following simple fact from elementary number theory: if the product of two relatively prime positive integers is a square then each factor is a square. Applying this to $m n=(a / 2)^{2}$, we conclude that both m and n are squares, i.e. $m=u^{2}$ and $n=w^{2}$ for some positive integers u, w such that $a / 2=u w$. It follows that

$$
a=2 u w, \quad b=u^{2}-w^{2}, \quad c=u^{2}+w^{2}
$$

where $u>w$ are positive, relatively prime integers of different parities. Conversely, any choice of such u, w leads to a primitive Pythagorean triple (a, b, c) given by the above formulas. Note that the inradius r of the primitive Pythagorean triangle corresponding to u, w is equal to

$$
r=(a+b-c) / 2=\left(2 u w+u^{2}-w^{2}-u^{2}-w^{2}\right) / 2=w(u-w)
$$

We are ready for our second solution.
Solution 2. Suppose that (a, b, c) is a Pythagorean triple which satisfies the conditions of our problem. As we noted above, it must be primitive.

Case 1. a is even.
Then there are relatively prime positive integers $u>w$ of different parities such that

$$
a=2 u w, \quad b=u^{2}-w^{2}, \quad c=u^{2}+w^{2}, \quad r=w(u-w) .
$$

Note that w divides a, so w and $a+1$ are relatively prime. On the other hand, w divides $r=\operatorname{gcd}(a+1, b)^{2}$, which in turn divides $(a+1)^{2}$. This means that $w=1$ and therefore $r=u-1=\operatorname{gcd}\left(2 u+1, u^{2}-1\right)^{2}$. Note that $u^{2}-1=(u+1)(u-1)$ and $\operatorname{gcd}(2 u+1, u+1)=1$. Thus $\operatorname{gcd}\left(2 u+1, u^{2}-1\right)=\operatorname{gcd}(2(u-1)+3, u-1)=$ $\operatorname{gcd}(3, u-1)$ can be either 1 or 3 . In the former case, we have $u-1=1$ so $u=2, a=4, b=3, c=5$. This however does not satisfy the assumption that $a<b$. In the latter case, $u-1=9$, so $u=10$, $a=20, b=99, c=101$. It is easy to se that $(20,99,101)$ is indeed a solution to our problem.

Case 2. b is even.
Then there are relatively prime positive integers $u>w$ of different parities such that

$$
b=2 u w, \quad a=u^{2}-w^{2}, \quad c=u^{2}+w^{2}, \quad r=w(u-w) .
$$

Note that $u-w$ divides $a=(u-w)(u+w)$, so $u-w$ and $a+1$ are relatively prime. On the other hand, $u-w$ divides $r=\operatorname{gcd}(a+1, b)^{2}$, which in turn divides $(a+1)^{2}$. This means that $u-w=1$ and therefore

$$
r=w=\operatorname{gcd}(2 w+2,2 w(w+1))^{2}=4(w+1)^{2}
$$

which is not possible. Thus there are no solutions in this case.
So our problem has unique solution $a=20, b=99, c=101$.

To practice the above ideas, we end with the following problems
Exercise. Find all Pythagorean triangles in which the inradius divides $(a+1)^{2}$, where a is the length of one of the legs of the triangle (there are 5 such triangles).

Exercise. Find all Pythagorean triangles in which the inradius is equal to 9 (there are five such triangles).

