§5.5 Average Value

Find the average value of each function on the given interval.
a) $f(x)=10 x-x^{2}$ on the interval $[0,2]$
b) $f(\theta)=11 \sec ^{2}(\theta / 4)$ on the interval $[0, \pi]$
c) $h(x)=7 \cos ^{4}(x) \sin (x)$ on the interval $[0, \pi]$

Consider the function

$$
f(x)=3 \sqrt{x}
$$

a) Find the average value $f_{\text {ave }}$ of f on the interval $[0,16]$.
b) Find all values c such that $f_{\text {avg }}=f(c)$.
c) Sketch the graph of f and, in the same picture, a rectangle whose area is the same as the area under the graph of f.

Consider the function

$$
f(x)=(x-5)^{2}
$$

a) Find the average value $f_{\text {ave }}$ of f on the interval $[4,7]$.
b) Find all values c such that $f_{\text {avg }}=f(c)$.
c) Sketch the graph of f and, in the same picture, a rectangle whose area is the same as the area under the graph of f.

Consider the function

$$
f(x)=9 \sin (4 x)
$$

a) Find the average value $f_{\text {ave }}$ of f on the interval $[-\pi, \pi]$.
b) Find all values c such that $f_{\text {avg }}=f(c)$.
c) Sketch the graph of f and, in the same picture, a rectangle whose area is the same as the area under the graph of f.

Find all numbers b such that the average value of

$$
f(x)=7+10 x-9 x^{2}
$$

on the interval $[0, b]$ is equal to 8 .

The velocity v of blood that flows in a blood vessel with radius R and length L at a distance r from the central axis is

$$
v(r)=\frac{P}{4 \eta L}\left(R^{2}-r^{2}\right)
$$

where P is the pressure difference between the ends of the vessel and η is the viscosity of the blood. Find the average velocity (with respect to r) over the interval $0 \leq r \leq R$.

