Today’s plan:

- Section 1.2.7 : Rankings
- Section 1.3 : One person - Multiple votes; Two alternatives
Section 1.2.7 : Rankings
Elections are sometimes held for multiple offices at once, with each candidate interested in any position.
Elections are sometimes held for multiple offices at once, with each candidate interested in any position.

For example, the Math Club could be electing president, vice-president and treasurer all at once.
Now it’s important to get not only the winner, but a ranking of the candidates.
Now it’s important to get not only the winner, but a ranking of the candidates.

If we do the Borda count method or pairwise comparisons method, a ranking falls right out: most points to fewest points.
Example

- Math Club electing president, vice-president and treasurer.
Example

- Math Club electing president, vice-president and treasurer.
- Four candidates A, B, C, and D.
Example

They’ll be ranked and

- first place is president
Example

They’ll be ranked and
- first place is president
- second place is vice-president
Example

They’ll be ranked and

- first place is president
- second place is vice-president
- third place is treasurer
a) Get the ranking of candidates using the Borda count method.
a) Get the ranking of candidates using the Borda count method.
b) Get the ranking of candidates using the pairwise comparisons method.
Borda method:

- A gets 45 points
- B gets 57 points
- C gets 58 points
- D gets 40 points
Borda method:

We already got:

- A gets 45 points
- B gets 57 points
- C gets 58 points
- D gets 40 points
So, ranking with the Borda count method we get:

President: C
Vice-president: B
Treasurer: A
Pairwise comparison method:

- A gets 0 points
- B gets 3 points
- C gets 2 points
- D gets 1 points
Pairwise comparison method:

We already got:

- **A** gets 0 points
- **B** gets 3 points
- **C** gets 2 points
- **D** gets 1 points
So, ranking with the Pairwise comparison method we get:

- President: B
- Vice-president: C
- Treasurer: D
Remark

The two methods produce completely different results.
Plurality with elimination can yield a ranking, by placing:

▶ the candidate eliminated in the first round in last place
▶ the candidate eliminated in the second round in second to last place
▶ and so on...
Plurality with elimination can yield a ranking, by placing:

- the candidate eliminated in the first round in last place
- the candidate eliminated in the second round in second to last place
- and so on...
Plurality with elimination can yield a ranking, by placing:

- the candidate eliminated in the first round in last place
- the candidate eliminated in the second round in second to last place
Plurality with elimination can yield a ranking, by placing:

- the candidate eliminated in the first round in last place
- the candidate eliminated in the second round in second to last place
- and so on...
Remarks:

- In order to get a complete ranking we can’t just stop when someone has a majority.
Remarks:

- In order to get a complete ranking we can’t just stop when someone has a majority.
- We **have to** keep going until there are only two candidates.
Example

Get the ranking of the candidates in the Math Club election, using Plurality with Elimination.
Solution

We already got:

- **candidate D** is eliminated in the first round
- **candidate B** is eliminated in the second round
- **candidate A** is eliminated in the third round
- **candidate C** is the winner
Therefore, according to the plurality with elimination method we get:

- President: C
- Vice-president: A
- Treasurer: B
(Note: We didn’t talk about rankings using the Plurality Method, but it’s clear how to do it.)
Section 1.3 : One Person – Multiple Votes; Two Alternatives
Example (Motivating)

At a shareholders assembly, the owners of a company vote on some propositions:
Example (Motivating)

At a shareholders assembly, the owners of a company vote on some propositions:

- Y/N: Approve the CFO’s annual report;
Example (Motivating)

At a shareholders assembly, the owners of a company vote on some propositions:

- Y/N: Approve the CFO’s annual report;
- Y/N: Reappoint the accounting firm;
Example (Motivating)

At a shareholders assembly, the owners of a company vote on some propositions:

- Y/N: Approve the CFO’s annual report;
- Y/N: Reappoint the accounting firm;
- Y/N: Increase the CEO’s salary.
Each stockholder participates in these decisions with a **number of votes proportional to the number of stocks owned**.
Definition

A weighted voting system is a voting system in which

- Each voter holds a certain number of votes, his/her weight
Definition

A weighted voting system is a voting system in which

- Each voter holds a certain number of votes, his/her weight
- all votes are on two-alternative (Y/N) propositions
Example

The Kleen Car Wash Co. is owned by 4 shareholders, A, B, C, and D.
Example

- The Kleen Car Wash Co. is owned by 4 shareholders, A, B, C, and D.
- They own 40%, 30%, 20%, and 10%, respectively, of the company stock.
This is a weighted voting system where

- **A** has 4 votes
- **B** has 3 votes
- **C** has 2 votes
- **D** has 1 vote.
Question

Is it clear how many votes it should take to pass a proposition?
Question

Is it clear how many votes it should take to pass a proposition?

Definition

The number of votes needed to pass/reject a proposition is called the **quota** of the voting system.
Question

Is it clear how many votes it should take to pass a proposition?

Definition

The number of votes needed to pass/reject a proposition is called the quota of the voting system.

The quota depends on the situation.
Since the total number of votes is 10, the quota should be at least 6.
Since the total number of votes is 10, the quota should be at least 6.
If it’s less, say 5, then a proposition could be both passed and rejected.
Since the total number of votes is 10, the quota should be at least 6.

If it’s less, say 5, then a proposition could be both passed and rejected. A voting system which allows this contradiction is called **anarchy**.
It also makes no sense to have a quota bigger than 10:
It also makes no sense to have a quota bigger than 10: nothing could ever pass!
It also makes no sense to have a quota bigger than 10: nothing could ever pass! Such a system is called a **non-functional** voting system.
Since we are interested in functional systems which are not anarchic, we impose the following quota restriction:
Quota Restriction

In a weighted voting system with n voters having weights w_1, w_2, \ldots, w_n, the quota q is restricted by the inequalities

$$\frac{w}{2} < q \leq w$$

where $w = w_1 + w_2 + \cdots + w_n$ is the total weight of the system.
In our previous example:

\[w = 4 + 3 + 2 + 1 = 10 \]

so, the quota restriction is \(5 < q \leq 10 \).
In our previous example:

- The total weight is \(w = 4 + 3 + 2 + 1 = 10 \).
- so, the quota restriction is \(5 < q \leq 10 \).
In our previous example:

- The total weight is

\[w = 4 + 3 + 2 + 1 = 10. \]
In our previous example:

- The total weight is
 \[w = 4 + 3 + 2 + 1 = 10. \]
- so, the quota restriction is
 \[5 < q \leq 10. \]
Careful! The bottom inequality is $<$ and the top is \leq.
Definition

When the quota is

- just above half of the total weight, we have a **simple majority** voting system
Definition

When the quota is

- just above half of the total weight, we have a **simple majority** voting system
- equal to the total weight, we have a **unanimity** voting system;
Definition

When the quota is

- just above half of the total weight, we have a **simple majority** voting system
- equal to the total weight, we have a **unanimity** voting system; here it takes all voters to say “yes” for a proposition to pass
<table>
<thead>
<tr>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>2/3 of the total weight, we have a 2/3-majority voting system</td>
</tr>
</tbody>
</table>
2/3 of the total weight, we have a 2/3-majority voting system. Simple majority and 2/3-majority voting systems are common.
To simplify notation, we write a voting system in the following format:

\[[q : w_1, w_2, \ldots, w_n] \]

where

- \(n \) is the number of voters.
To simplify notation, we write a voting system in the following format:

\[[q : w_1, w_2, \ldots, w_n] \]

where

- \(n \) is the number of voters
- \(w_1, w_2, \ldots, w_n \) are the weights (\# of votes) of the voters
To simplify notation, we write a voting system in the following format:

\[
[q : w_1, w_2, \ldots, w_n]
\]

where

- \(n \) is the number of voters
- \(w_1, w_2, \ldots, w_n \) are the weights (\# of votes) of the voters
- \(q \) is the quota.
To simplify notation, we write a voting system in the following format:

\[[q : w_1, w_2, \ldots, w_n] \]

where

- \(n \) is the number of voters
- \(w_1, w_2, \ldots, w_n \) are the weights (\# of votes) of the voters
- \(q \) is the quota.

Usually the weights are listed in decreasing order.
Example

The Kleen Car Wash company has two types of propositions:
Example

The Kleen Car Wash company has two types of propositions:

- **special propositions** which deal with important things. These require a **2/3 majority** to pass.
Example

The Kleen Car Wash company has two types of propositions:

- **special propositions** which deal with important things. These require a **2/3 majority** to pass.
- **ordinary propositions**, which are the rest. These require only a **simple majority**.
Example

Describe the two voting systems, in the form

\[[q : w_1, w_2, \ldots, w_n] \]
Solution

Ordinary propositions A simple majority quota is $q = 6$, so this system is

$$[6 : 4, 3, 2, 1]$$
Solution

Special propositions

- 2/3 of 10 is 6.67 but the quota must be an integer so we take $q = 7$.
Solution

Special propositions

- 2/3 of 10 is 6.67 but the quota must be an integer so we take $q = 7$.
- The special proposition voting system is therefore

 $[7 : 4, 3, 2, 1]$
Solution

Special propositions

- 2/3 of 10 is 6.67 but the quota must be an integer so we take $q = 7$.
- The special proposition voting system is therefore $[7 : 4, 3, 2, 1]$.

A has enough votes to stop a special proposition on her own!
Definition
We say that a voter has **veto power** if he/she has enough weight to **block** a proposition on his/her own.
Note, however, that A does not have enough weight to pass a proposition all by herself.
Note, however, that A does not have enough weight to pass a proposition all by herself.

Definition

We say that a voter is a **dictator** if they have enough weight to pass a proposition all by themselves.
Remarks:

- A dictator must have weight $w_i \geq q > w/2$ and therefore there can be no more than one dictator.
Remarks:

- A dictator must have weight $w_i \geq q > w/2$ and therefore there can be no more than one dictator.
- Voting systems with a dictator are not so interesting.
Remarks:

- A dictator must have weight $w_i \geq q > w/2$ and therefore there can be no more than one dictator.
- Voting systems with a dictator are not so interesting.
- The dictator can do whatever they want.
Example

Consider the voting system \([8 : 10, 3, 2]\).
Example

Consider the voting system $[8 : 10, 3, 2]$. It has a dictator.
Example

Consider the voting system \([8 : 10, 3, 2]\).

- It has a dictator, namely the first voter
Example

Consider the voting system \([8 : 10, 3, 2]\).

- It has a dictator, namely the first voter
- The other two voters have no power in the system.
Example

Consider the voting system \([8 : 10, 3, 2]\).

- It has a dictator, namely the first voter
- The other two voters have no power in the system.

For all practical purposes this system is the same as

\([1 : 1, 0, 0]\).
Next time:

Section 1.3.1: Coalitions and Section 1.3.2: Critical voters; Power Index