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A few times in this class we’ve considered functions of random variables (for example X2), but
typically we have just computed the expectation of this (for example E[X2]). This was useful because
the moments of random variable give us information about the original random variable. But sometimes
we might be interested in g(X), itself, for some function g. In these cases we would like to actually
compute the pdf/pmf of g(X). In Chapter 6, we’ll discuss several ways to do this.

In these notes we will compute the pdf of g(Y ) for g :R→R and Y a random variable.
In later sections we will also consider the pdf of g(X,Y ) for g :R2→R and X,Y random variables.
The book organizes these in a different order than I will.

1 Functions of Discrete Random variables
We’ll focus very little on functions of Discrete Random variables, because it doesn’t end up being so interest-
ing. But we’ll start with an example because it’s a little bit easier to understand than the continuous case.

Example 1.1. Let X be a discrete random variable with pmf:

pX(−1)= .2 pX(0)= .1 pX(1)= .4 pX(2)= .3.

Compute the pmf of X2.

Solution: The random variable X can take the values −1,0,1,2, so the random variable X2 can
take the values 02,12,22 (note we used that 12 =(−1)2). Then we can compute the probability it
takes on each of these values:

P(X2 =0)=P(X=0)= .1

P(X2 =1)=P(X=−1)+P(X=1)= .2+.4= .6

P(X2 =4)=P(X=2)= .3

So the pmf is
pX2(0)= .2 pX2(1)= .6 pX2(4)= .3

This example shows the general idea of computing the pmf of g(X) for some function X. First you
determine the values g(X) can take, by applying the function g to the values X can take. Then to
determine the pmf of g(X) at some value y, add up the probabilities that X takes on each value that
is mapped by g to y. Mathematically, we’re adding up the probabilities X takes a value in the inverse
image of y, which we label g−1(y).



2 Functions of Continuous Random variables
We’ll most focus on the continuous case, which you can think of similar to the discrete case, but we
cannot merely compute the probability a continuous random variable takes a fixed value, because this
is always 0. We instead will work with the CDF.

2.1 Linear Functions
We have actually briefly seen a special case of computing the pdf of g(X), when g(x)=ax+b is a linear
function. We used this idea to compute the expectation and variance of normal and exponential random
variables. Let’s look at this example again.

Example 2.1. Let X be a random variable with pdf fX(x). Let a,b be real numbers. What is the pdf
of aX+b?

Solution: We’ll actually compute the CDF of aX+b, then differentiate it to get the pdf. The
derivation is slightly different if a is positive or negative. Let’s assume a>0 first.

FaX+b(t)=P(aX+b≤t)

=P
(
X≤ t−b

a

)

=FX
(
t−b
a

)

The first line is the definition of the CDF. In the second line we solve for X. In the third line,
we recognize the previous line was actually the CDF of X evaluated at t−b

a
.

Now we differentiate:

faX+b(t)= d

dt
FaX+b(t)= d

dt
FX

(
t−b
a

)
=fX

(
t−b
a

)
1
a

where the last equality uses the chain rule.
Now we consider the case a<0:

FaX+b(t)=P(aX+b≤t)

=P
(
X≥ t−b

a

)

=1−FX
(
t−b
a

)

The difference is when we solve for X, we are dividing by a negative number so we flip the inequality.
Then we can differentiate as before:
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faX+b(t)= d

dt
FaX+b(t)= d

dt

(
1−FX

(
t−b
a

))
=−fX

(
t−b
a

)
1
a

We can combine these two cases as:

faX+b(t)= 1
|a|
fX

(
t−b
a

)

Example 2.2. Let X be an exponential random variable with mean 10. What is the pdf of −2X+1?

Solution: The first thing we should do is determine where the support of the pdf of −2X+1 is
positive. We do this by applying the function −2x+1 to the set where the pdf of X is positive. In
this case the pdf of X is positive for x>0, so the pdf of −2X+1 will be positive for when evaluated
at values less than 1.

To determine this region is it useful to draw the graph of −2x+1, we then look at what y values
are obtained when x>0 (the set where the pdf of X is positive)

x

y

(0,1)

On the picture, we want to look at what values of the y-axis are hit, when we evaluate −2x+1
at x>0. The set x>0 is chosen because that is where the pdf of X is positive. From the picture,
we see each y values less than 1 will be hit. So the pdf of −2X+1 is positive when evaluated at
points less than 1.

We can then follow the above derivation line by line with the explicit formula

fX(x)= 1
10e

−x/10

for x>0 and 0 otherwise, or you can just apply the formula to get:

f−2X+1(t)= 1
|−2|fX

(
t−1
−2

)
= 1

20e
(t−1)/20

for t<1 and 0 otherwise.
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2.2 General Functions
The computation of the pdf of g(X) in the general case doesn’t follow quite as nicely, so it’s best to
start with an example. The general steps will look similar to the linear function case, but with some
new complications.

Example 2.3. Let Y be a uniformly distributed random variable on the interval [−1,2]. Compute the
pdf of Y 2.

Solution: We start be determining the where the pdf of Y 2 will be positive. To do this is is useful
to graph the function y2 on the set [−1,2].

y

y2

−1 2
0

4

So we see the pdf of Y 2 will be positive between 0 and 4. Furthermore, we see two points get
mapped to values between 0 and 1 (namely the values between -1 and 1) and one point point maps
to the values between 1 and 4. When we compute the CDF we will notice this.

Before we compute the CDF of Y 2, note that the pdf of Y is

fY (y)= 1
3

for −1≤y≤2, and 0 otherwise. The picture is:
y

fY (y)

−1

1/3

2

The CDF is:

FY 2(t)=P(Y 2≤t)
=P(−

√
t≤Y ≤

√
t) (2.1)

if 0≤t≤1 then

P(−t≤Y ≤t)=
∫ √t
−
√
t

1
3dy= 2

√
t

3
The picture to determine the bounds is:
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y

y2

−1 2
0

4

t

√
t−

√
t

if 1≤t≤4 then

P(−t≤Y ≤t)=
∫ √t
−1

1
3dy=

√
t

3 +1
3

The picture to determine the bounds is:

y

y2

−1 2
0

4

t

√
t−1

Now we put the combine the last two computations to get

fY 2(t)= d

dt
FY 2(t)

So differentiating the two expressions above we get:

fY 2(t)=


1

3
√
t
, if 0≤t≤1,

1
6
√
t
, if 1≤t≤4,

0, otherwise.

You can check that this is in fact a pdf (it is positive and integrates to 1). In general it is a
good idea to check your work and integrate your final answer, making sure it integrates to 1. If not,
maybe you forget to integrate over a certain set.
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The graph of the pdf of Y 2 is:
y

fY 2(y)

41

In general idea to compute the pdf of g(Y ) when the pdf of Y is known you start with the CDF
of g(Y ) and try to write in terms of probabilities involving Y . This was done in (2.1). In general is this
the hard part of the computation, where you need to be careful to not leave any terms out. Once you
have probabilities involving just Y , use the pdf of Y to integrate and compute these probabilities. Then
differentiate the CDF to get the pdf.

Mathematically this looks something like

Fg(Y )(t)=P(g(Y )≤t)=
∫
y:g(y)≤t

fY (y)dy

fg(Y )(t)= d

dt
Fg(Y )(t)

Often the most work goes into determining the set {y :g(y)≤t}, (this is notation for y such that g(y) is
less than or equal to t).

2.3 Monotonic Functions
We conclude with a special case of functions g, I will always assume the function g is differentiable, which
will be a fairly mild assumption. If the derivative g′ is positive then g is increasing and if the derivative
g′ is negative then g is decreasing. In either case, there exist an inverse function (denoted g−1) such that

g(g−1(x))=g−1(g(x))=x.

The linear functions above are monotonic (increasing if a>0 and decreasing is a<0). The function
y2 is not monotonic around 0, and therefore there does not exist an inverse function (−y and y get
mapped to the same point).

In general, for monotonic functions the pdf can actually be computed similar to in the linear function
case:

If g′>0 then
Fg(Y )(t)=P(g(Y )≤t)=P(Y ≤g−1(t))=FY (g−1(t))

and if g′<0 then
Fg(Y )(t)=P(g(Y )≤t)=P(Y ≥g−1(t))=1−FY (g−1(t))

the difference between positive and negative derivatives is same as in the linear function case.
Then differentiating we have

fg(Y )(t)=fY (g−1(t))
∣∣∣∣∣ ddtg−1(t)

∣∣∣∣∣
where the second term comes from the chain rule. The absolute value takes care accounts for the case
with this derivative is negative.
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Note that we don’t require the derivative of g to always have the same sign, we only need it to have
the same sign for values where the pdf of Y is positive.

Let’s do an example

Example 2.4. A circle is drawn with a random radius. The distribution of the radius is an exponential
random variable with mean 1.

What is the pdf the of the area this circle.

Solution: Recall the area of a circle is with radius r is πr2. So we define a random variable A=πR2

where R is an exponential random variable with mean 1. The pdf of R is

fR(r)=e−r

for r>0 and 0 otherwise.
The exponential random variable only takes positive values, for positive r the derivative of πr2

always positive so we can apply the simplified formula above.
Our function is g(r)=πr2 so g−1(t)=

√
t/π.

fA(t)=fR

√ t

π

∣∣∣∣∣∣ ddt
√ t

π

∣∣∣∣∣∣=e−
√
t/π 1

2
√
πt

for t>0 and 0 otherwise.

The graph of this new pdf is:
t

fA(t)

The formula
fg(Y )(t)=fY (g−1(t))

∣∣∣∣∣ ddtg−1(t)
∣∣∣∣∣

is not so easy to remember. But if you know the technique in the general case, and remember that
increasing/decreasing functions have an inverse, then you can derive this formula readily from the general
argument.
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