
Trigonometry review drill

- 1. For an angle of 62° in standard position (measured from 0°):
- a) Give two coterminal angles, one positive and one negative
- b) Find the complement and supplement of this angle
- c) Convert this angle to π radian measure
- 3. a) Change 84 $^{\rm o}$ to π $^{\rm r}$
- b) 5^r to ° [Note: this is from pure radians, not π^r]
- 4. Find the missing sides of the triangle shown:

- 5. Angle θ (in standard position) has terminal side going through (–2, 7).
- a) Find the value of all 6 trig functions for this angle.

6. Evaluate

$$y = \sin(-45)$$

$$y = tan (\pi/6)$$

$$y = \cot (-\pi/4)$$

$$y = \cos(-7\pi/3)$$

$$y = \sin 7\pi$$

7. a) Answer in interval notation where necessary:

Domain

Range

$$y = \sin^{-1} x$$

$$y = \cos^{-1} x$$

$$y = tan^{-1}x$$

$$\arctan\left(\sqrt{3}\right)$$

$$\cos(\tan^{-1}(3/4))$$

$$\cos^{-1}(\cos(-\pi/4))$$

sin(arccos (x))

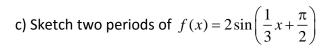
(Hint: Notice that $\cos \theta = x$, that is, x/1, where x is adjacent and 1 is hypotenuse; find the opposite side, and you can then find $sin\theta$)

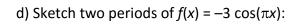
sec(arctan(x/3))

(Same hint as above, but for tan $\theta = x/3$, you will find the missing side and express its secant value, that is, $1/\cos\theta$)

8. Fill in the blanks via the cofunction identities:

$$\cot (\pi/5) =$$


$$sec(0) =$$


9. a)
$$y = 2\cos(\pi x) - 4$$
 amplitude =

Name the transformations in proper order:

b)
$$y = -\sin(x + \pi/3)$$
 amplitude =

Name the transformations in proper order:

- 10. Evaluate by an appropriate angle sum, difference, half or double angle formula:
- a) $tan(5\pi/12)$

 $sin(5\pi/12)$

b) cos(105°)

tan(105°)

c) $sin(\pi/8)$

 $tan(\pi/8)$

11. Verify the trigonometric identities:

$$\cos^2 x + \cos^2 x \tan^2 x = 1$$

$$\cos x + \sin x \tan x = \sec x$$

12. a) Solve for x on the interval $[0, 2\pi]$:

$$1 + \cos x = 2\sin^2 x$$

b) Solve for x in the following equation, finding **all** solutions:

$$2\cos(3x) = -1$$

13. Suppose angles α and β are in the standard position (that is, measured as usual from 0°) and suppose further that:

$$\frac{3\pi}{2} < \alpha < \pi$$
 and $\cos \alpha = 5/13$

AND

$$\frac{3\pi}{2} < \beta < 2\pi \quad \text{and} \quad \sin \beta = -1/2$$

- a) In which quadrant is angle α ?
- b) In which quadrant is angle β ?
- c) Find cos $\boldsymbol{\beta}$
- d) Find sin α
- e) Find $sin(\alpha + \beta)$
- f) In which quadrant is $\alpha + \beta$? Explain.
- g) Find $sin(2\beta)$
- h) In which quadrant is $\beta/2$? Explain.
- h) Find sin ($\beta/2$).