1. A company manufactures two types of athletic shoes: jogging shoes and cross-trainers. Total monthly revenue from $x$ units of jogging shoes and $y$ units of cross-trainers is given by $R(x, y)=-5 x^{2}-8 y^{2}-2 x y+42 x+102 y$, where $x$ and $y$ are in thousands of units. In a month it has to turn out 10,000 pairs of shoes in all. Using Lagrange multiplier method, find the values of $x$ and $y$ to maximize the total revenue. Watch the units!
2. The manager of a bookstore determines that when a certain new paperback novel is priced at $p$ dollars per copy, the daily demand will be $q=300-p^{2}$ copies.
a. What is the domain (the possible values of $p$ ) of this function?
b. Write the elasticity function for this scenario.
c. Using $E(p)$, find the price at which there will be unit elasticity.
d. If the price charged is less than what you found in (c), what would a small increase in price do to revenue? Justify your answer using the formula that relates $E$ and $R$.
3. A company has determined that its annual production level is given by the Cobb-Douglas function $f(x, y)=2.5 x^{0.45} y^{0.55}$ where $x$ represents the total number of labor hours in 1 year and $y$ represents the total capital input for the company. Suppose 1 unit of labor costs $\$ 40$ and 1 unit of capital costs $\$ 50$. Use the method of Lagrange multipliers to find the maximum production level of $f(x, y)=2.5 x^{0.45} y^{0.55}$ subject to a budgetary constraint of $\$ 500,000$ per year.

TIP: Don't multiply or divide values until the end. Reduce as you go along.
HINT: The solution ( $x=$ units of labor, $y=$ units of capital) has whole numbers on the order of thousands.

