Section 22 - Absolute Extrema

PROCEDURE Locating Absolute Maximum and Minimum Values

Assume the function f is continuous on the closed interval $[a, b]$.

1. Locate the critical points c in (a, b), where $f^{\prime}(c)=0$ or $f^{\prime}(c)$ does not exist. These points are candidates for absolute maxima and minima.
2. Evaluate f at the critical points and at the endpoints of $[a, b]$.
3. Choose the largest and smallest values of f from Step 2 for the absolute maximum and minimum values, respectively.

Section 22 - Absolute Extrema

Example 3(g)

Find the locations of all absolute extrema for $h(x)=\sqrt{x^{2}-9}$.
Solution
The domain of h is $(-\infty,-3] \cup[3, \infty)$.
The candidates test needs to be modified slightly.

$$
h(x)=\sqrt{x^{2}-9} \quad \Longrightarrow \quad h^{\prime}(x)=\frac{x}{\sqrt{x^{2}-9}}
$$

The critical numbers are ± 3. 0 is not in the domain of h.
Evaluate h at each end point and at each critical point.

$$
h(3)=0 \text { and } h(-3)=0 .
$$

This means that 0 is the global minimum for h and it occurs at both $x= \pm 3$.

Section 22 - Absolute Extrema

