Excluding Values from the Domain of $(f \circ g)(x) = f(g(x))$

The following values must be excluded from the input x:

- If x is not in the domain of g, it must not be in the domain of f ∘ g.
- Any x for which g(x) is not in the domain of f must not be in the domain of $f \circ g$.

EXAMPLE 5) Forming a Composite Function and Finding Its Domain

Given $f(x) = \frac{2}{x-1}$ and $g(x) = \frac{3}{x}$, find each of the following:

- **a.** $(f \circ g)(x)$ **b.** the domain of $f \circ g$.

Solution

a. Because $(f \circ g)(x)$ means f(g(x)), we must replace x in $f(x) = \frac{2}{x-1}$

$$(f\circ g)(x)=f(g(x))=\frac{2}{g(x)-1}=\frac{2}{\frac{3}{x}-1}=\frac{2}{\frac{3}{x}-1}\cdot\frac{x}{x}=\frac{2x}{3-x}$$
 Simplify the complex fraction by multiplying by $\frac{3}{x}$, or 1.

Thus,
$$(f \circ g)(x) = \frac{2x}{3-x}$$
.

b. We determine values to exclude from the domain of (f

g)(x) in two steps.

Rules for Excluding Numbers from the Domain of $(f \circ g)(x) = f(g(x))$	Applying the Rules to $f(x) = \frac{2}{x-1} \text{ and } g(x) = \frac{3}{x}$
If x is not in the domain of g , it must not be in the domain of $f \circ g$. Any x for which $g(x)$ is not in the domain of f must not be in the domain of $f \circ g$.	Because $g(x) = \frac{3}{x}$, 0 is not in the domain of g . Thus, 0 must be excluded from the domain of $f \circ g$. Because $f(g(x)) = \frac{2}{g(x) - 1}$, we must exclude from the domain of $f \circ g$ any x for which $g(x) = 1$. $\frac{3}{x} = 1$ Set $g(x)$ equal to 1. $3 = x$ Multiply both sides by x . 3 must be excluded from the domain of $f \circ g$.

We see that 0 and 3 must be excluded from the domain of $f \circ g$. The domain of $f \circ g$ is

$$(-\infty,0)\cup(0,3)\cup(3,\infty).$$