Bob, who manages Gil's Bookstore, determines that if a new paperback edition of One Hundred Years of Solitude, by Gabriel Garcia Marquez, is priced at p dollars per copy, the daily demand is $q=300-p^{2}$ copies.
a. What is the domain of this function? Though a polynomial has a domain of the reals, a demand function is restricted to those $p \geq 0$, and such that $q \geq 0$. But the graph of $q=300-p^{2}$, it's obvious by the roots that this occurs where:

$$
0 \leq p \leq \sqrt{300}
$$

b. Write the elasticity function for this scenario. Important: p is the input variable. Leave as p. $q(p)$ is the given demand function.

$$
E(p)=\frac{-p}{q(p)} \cdot \frac{d q}{d p}=\frac{-p}{300-p^{2}} \cdot-2 p=\frac{2 p^{2}}{300-p^{2}} \text { done }
$$

c. If the price were increased slightly from $\$ 8$, would revenue increase or decrease? Explain.
$E(8)=128 / 236<1$, hence demand is inelastic at $\$ 8$, thus, revenue would increase with a small increase in price. This is obvious as well from the relationship between E and R^{\prime} :

$$
R^{\prime}(p)=q(1-E)>0 \text { when } E<1 \text {. The derivative is positive where the fcn isincreasing. }
$$

d. What price would bring maximum revenue for this paperback (that is, the optimal price)?

$$
\frac{2 p^{2}}{300-p^{2}}=1, p=\$ 10
$$

e. How many books would Bob sell at the price you found in (d)?

$$
q(10)=300-100=200 \text { books }
$$

f. Draw a graph of the revenue function for this scenario. Label ordered pair the point at which the revenue is maximum.

First, find $R(p): \quad R=p q=p\left(300-p^{2}\right)=300 p-p^{3}$
As a little review in curve sketching, consider that the polynomial's end behavior and its roots:

We consider only the portion in the first quadrant.

